|本期目录/Table of Contents|

[1]于雪然,薛欣月,田颖,等.水稻长链非编码RNA的研究进展[J].江苏农业科学,2022,50(15):23-30.
 Yu Xueran,et al.Research progress of rice lncRNAs[J].Jiangsu Agricultural Sciences,2022,50(15):23-30.
点击复制

水稻长链非编码RNA的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第15期
页码:
23-30
栏目:
专论与综述
出版日期:
2022-08-05

文章信息/Info

Title:
Research progress of rice lncRNAs
作者:
于雪然薛欣月田颖杜怀东李培富马天利
宁夏优势特色作物现代分子育种重点实验室/宁夏大学农学院,宁夏银川 750021
Author(s):
Yu Xueranet al
关键词:
lncRNAs水稻生物信息数据库胁迫反应调控
Keywords:
-
分类号:
S511.032
DOI:
-
文献标志码:
A
摘要:
长链非编码RNA(lncRNAs)是一类长度在200 bp以上,不具备编码蛋白功能的内源性RNA分子,被认为是许多生物过程中的重要调节因子。近年来,lncRNA是生物学领域的研究热点。研究发现,水稻lncRNAs可以与生物大分子(蛋白质、DNA和RNA)相互作用,在水稻生长发育(如调节水稻生殖过程)、应对生物胁迫(如参与抗稻瘟病和褐飞虱病害)及非生物胁迫过程(如低温、高温、干旱、盐碱、重金属胁迫和营养元素缺乏)中发挥着重要功能。尽管在水稻中研究lncRNAs已经取得了一些进展,这为未来水稻lncRNAs的研究打下了良好基础,但是水稻lncRNAs参与生长发育及应对各种胁迫反应过程的分子机制和调节过程依然值得探索和深入研究。对近年来已经发表的重要水稻lncRNAs进行总结,列举可用于水稻lncRNAs分析的主要生物信息数据库,综述水稻lncRNAs研究的现状和进展,并讨论目前存在的问题及发展前景,以期为今后研究水稻lncRNAs的功能及其在农作物中的应用提供参考,对水稻lncRNAs的进一步研究提供建议及思路。
Abstract:
-

参考文献/References:

[1]Bhatia G,Goyal N,Sharma S,et al. Present scenario of long non-coding RNAs in plants[J]. Non-Coding RNA,2017,3(2):16.
[2]Hüttenhofer A,Schattner P,Polacek N. Non-coding RNAs:hope or hype?[J]. Trends in Genetics,2005,21(5):289-297.
[3]Kouchi H,Takane K I,So R B,et al. Rice ENOD40:isolation and expression analysis in rice and transgenic soybean root nodules[J]. The Plant Journal,1999,18(2):121-129.
[4]Ponting C P,Oliver P L,Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
[5]Palazzo A F,Koonin E V. Functional long non-coding RNAs evolve from junk transcripts[J]. Cell,2020,183(5):1151-1161.
[6]Duret L,Chureau C,Samain S,et al. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene[J]. Science,2006,312(5780):1653-1655.
[7]Hutchinson J N,Ensminger A W,Clemson C M,et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains[J]. BMC Genomics,2007,8:39.
[8]Conley A B,Miller W J,Jordan I K. Human Cis natural antisense transcripts initiated by transposable elements[J]. Trends in Genetics,2008,24(2):53-56.
[9]Szczes'niak M W,Bryzghalov O,Ciomborowska-Basheer J,et al. CANTATAdb 2.0:expanding the collection of plant long noncoding RNAs[M]//Chekanova J A,Wang H L V. Plant long non-coding RNAs.New York:Humana Press,2019:415-429.
[10]Paytuvi-Gallart A,Sanseverino W,Aiese Cigliano R. A walkthrough to the use of GreeNC:the plant lncRNA database[M]//Chekanova J A,Wang H L V. Plant long non-coding RNAs.New York:Humana Press,2019:397-414.
[11]Xuan H D,Zhang L Z,Liu X S,et al. PLNlncRbase:a resource for experimentally identified lncRNAs in plants[J]. Gene,2015,573(2):328-332.
[12]Zhou B L,Zhao H Y,Yu J F,et al. Experimentally validated plant lncRNAs in EVLncRNAs database[M]//Chekanova J A,Wang H L V. Plant long non-coding RNAs.New York:Humana Press,2019:431-437.
[13]Yi X,Zhang Z H,Ling Y,et al. PNRD:a plant non-coding RNA database[J]. Nucleic Acids Research,2015,43(D1):D982-D989.
[14]Singh U,Khemka N,Rajkumar M S,et al. PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea[J]. Nucleic Acids Research,2017,45(22):e183.
[15]Shankar R,Bhattacharjee A,Jain M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses[J]. Scientific Reports,2016,6:23719.
[16]Sang J,Zou D,Wang Z N,et al. IC4R-2.0:rice genome reannotation using massive RNA-seq data[J]. Genomics,Proteomics & Bioinformatics,2020,18(2):161-172.
[17]Jin J J,Lu P,Xu Y L,et al. PLncDB V2.0:a comprehensive encyclopedia of plant long noncoding RNAs[J]. Nucleic Acids Research,2020,49(D1):D1489-D1495.
[18]Zhang Z F,Xu Y,Yang F,et al. RiceLncPedia:a comprehensive database of rice long non-coding RNAs[J]. Plant Biotechnology Journal,2021,19(8):1492-1494.
[19]Tsai M C,Spitale R C,Chang H Y. Long intergenic noncoding RNAs:new links in cancer progression[J]. Cancer Research,2011,71(1):3-7.
[20]Guttman M,Rinn J L. Modular regulatory principles of large non-coding RNAs[J]. Nature,2012,482(7385):339-346.
[21]Yang J R,Zhang J Z. Human long noncoding RNAs are substantially less folded than messenger RNAs[J]. Molecular Biology and Evolution,2015,32(4):970-977.
[22]Costa F F. Non-coding RNAs:new players in eukaryotic biology[J]. Gene,2005,357(2):83-94.
[23]Shimura H,Masuta C. Plant subviral RNAs as a long noncoding RNA (lncRNA):analogy with animal lncRNAs in host-virus interactions[J]. Virus Research,2016,212:25-29.
[24]Yuan J P,Li J R,Yang Y,et al. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa[J]. The Plant Journal,2018,93(5):814-827.
[25]Hirayama T,Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past,present and future[J]. The Plant Journal,2010,61(6):1041-1052.
[26]Shin S Y,Jeong J S,Lim J Y,et al. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies[J]. BMC Genomics,2018,19(1):532.
[27]Leng Y,Sun J,Wang J G,et al. Genome-wide lncRNAs identification and association analysis for cold-responsive genes at the booting stage in rice (Oryza sativa L.)[J]. The Plant Genome,2020,13(2):e20020.
[28]Luo R J,Cao R J,Jiao G A,et al. The involvement of long non-coding RNAs in the formation of high temperature-induced grain chalkiness in rice[J]. Plant Growth Regulation,2018,86(2):263-271.
[29]Qi W D,Chen H P,Yang Z Z,et al. Systematic characterization of long non-coding RNAs and their responses to drought stress in Dongxiang wild rice[J]. Rice Science,2020,27(1):21-31.
[30]Li P,Yang H,Wang L,et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice[J]. Frontiers in Genetics,2019,10:55.
[31]Xu X W,Zhou X H,Wang R R,et al. Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network[J]. Scientific Reports,2016,6:20715.
[32]Wang M E,Chen W P,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,Southern China[J]. Chemosphere,2016,144:346-351.
[33]Chen L,Shi S L,Jiang N F,et al. Genome-wide analysis of long non-coding RNAs affecting roots development at an early stage in the rice response to cadmium stress[J]. BMC Genomics,2018,19(1):2-10.
[34]Tang Z H,Xu M,Ito H,et al. Deciphering the non-coding RNA-level response to arsenic stress in rice (Oryza sativa)[J]. Plant Signaling & Behavior,2019,14(9):1629268.
[35]Wang S D,Sun S,Guo R Z,et al. Transcriptomic profiling of Fe-responsive lncRNAs and their regulatory mechanism in rice[J]. Genes,2021,12(4):2-17.
[36]Nejat N,Mantri N. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses[J]. Critical Reviews in Biotechnology,2018,38(1):93-105.
[37]汪杰,李世明,王楚桃,等. 水稻育种发展趋势及直播耐淹水萌发研究进展[J]. 中国种业,2020(8):4-7.
[38]蒋刚,黄乾龙,李贤勇,等. 抗稻瘟病籼型水稻三系不育系Q6A的选育[J]. 杂交水稻,2020,35(5):25-26.
[39]李小盛,卢东柏,曾文斌,等. 抗稻瘟病杂交水稻新组合金龙优粤禾丝苗[J]. 杂交水稻,2020,35(4):119-121.
[40]李桂华. 水稻稻瘟病田间症状及综合防治技术[J]. 中国农业文摘-农业工程,2020,32(4):63-64.
[41]Jain P,Sharma V,Dubey H,et al. Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae[J]. Bioinformation,2017,13(8):249-255.
[42]Wang L L,Jin J J,Li L H,et al. Long non-coding RNAs responsive to blast fungus infection in rice[J]. Rice,2020,13(1):77.
[43]Tang J T,Chen X Y,Yan Y Q,et al. Comprehensive transcriptome profiling reveals abundant long non-coding RNAs associated with development of the rice false smut fungus,Ustilaginoidea virens[J]. Environmental Microbiology,2021,23(9):4998-5013.
[44]Cao W L,Gan L M,Cao J Y,et al. Transcriptional landscape of pathogen-responsive lncrnas reveals OS_LNC1812-induced disease resistance by abscisic acid pathway in rice[Z/OL]. https://doi.org/10.21203/rs.3.rs-244393/v1.
[45]Zhang T Z,Liang Q,Li C Y,et al. Transcriptome analysis of rice reveals the lncRNA-mRNA regulatory network in response to rice black-streaked dwarf virus infection[J]. Viruses,2020,12(9):951-976.
[46]Xiao H M,Yuan Z T,Guo D H,et al. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper,Nilaparvata lugens[J]. BMC Genomics,2015,16:1-16.
[47]Chen M Y,Ye W Y,Xiao H M,et al. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus[J]. Journal of Integrative Agriculture,2019,18(12):2814-2822.
[48]袁祝婷. 褐飞虱长链非编码RNA基因BPHOGS10005591-OT2的表达及功能分析[D]. 南京:南京农业大学,2017.
[49]Wang Y,Luo X,Sun F,et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications,2018,9:1-9.
[50]Zhang Y C,Liao J Y,Li Z Y,et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biology,2014,15(12):2-16.
[51]Wang M,Wu H J,Fang J,et al. A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160[J]. Science Bulletin,2017,62(7):470-475.
[52]Luan X,Liu S C,Ke S W,et al. Epigenetic modification of ESP,encoding a putative long noncoding RNA,affects panicle architecture in rice[J]. Rice,2019,12(1):2-8.
[53]Wang H,Niu Q W,Wu H W,et al. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits[J]. The Plant Journal,2015,84(2):404-416.
[54]Liu X,Li D Y,Zhang D L,et al. A novel antisense long noncoding RNA,TWISTED LEAF,maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. New Phytologist,2018,218(2):774-788.
[55]Fan Y R,Yang J Y,Mathioni S M,et al. PMS1T,producing phased small-interfering RNAs,regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(52):15144-15149.
[56]Ding J H,Lu Q,Ouyang Y D,et al. A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7):2654-2659.
[57]Zhou H,Liu Q J,Li J,et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research,2012,22(4):649-660.
[58]Liu H L,Wang R H,Mao B G,et al. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis[J]. BMC Genomics,2019,20(1):90.
[59]Komiya R,Ohyanagi H,Niihama M,et al. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs[J]. The Plant Journal,2014,78(3):385-397.
[60]Gao C X,Zheng X W,Li H B,et al. Roles of lncRNAs in rice:advances and challenges[J]. Rice Science,2020,27(5):384-395.
[61]Deng Y L,Luo H,Yang Z Y,et al. LncAS2Cancer:a comprehensive database for alternative splicing of lncRNAs across human cancers[J]. Briefings in Bioinformatics,2020,22(3):179.
[62]Zhang S H,He X L,Zhang R,et al. LncR2metasta:a manually curated database for experimentally supported lncRNAs during various cancer metastatic events[J]. Briefings in Bioinformatics,2020,22(3):178.
[63]Li Y Y,Li X C,Yang Y S,et al. TRlnc:a comprehensive database for human transcriptional regulatory information of lncRNAs[J]. Briefings in Bioinformatics,2021,22(2):1929-1939.
[64]Napoli S. LncRNAs and available databases[M]//Chekanova J A,Wang H L V. Plant Long Non-Coding RNAs.New York:Humana Press,2021:3-26.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(15):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(15):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(15):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(15):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(15):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(15):90.

备注/Memo

备注/Memo:
收稿日期:2021-10-08
基金项目:宁夏自然科学基金(编号:2021AAC03086);宁夏重点研发项目引才专项(编号:2019BEB04014)。
作者简介:于雪然(1996—),女,内蒙古赤峰人,硕士研究生,研究方向为水稻遗传育种。E-mail:yxr_cf@163.com。
通信作者:马天利,博士,讲师,研究方向为水稻遗传育种。E-mail:tianlima2018@163.com。
更新日期/Last Update: 2022-08-05