|本期目录/Table of Contents|

[1]田颖,于雪然,杜怀东,等.水稻粒形基因的遗传研究进展[J].江苏农业科学,2022,50(21):16-26.
 Tian Ying,et al.Research progress on inheritance of rice grain shape gene[J].Jiangsu Agricultural Sciences,2022,50(21):16-26.
点击复制

水稻粒形基因的遗传研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第21期
页码:
16-26
栏目:
“种业振兴”专栏
出版日期:
2022-11-05

文章信息/Info

Title:
Research progress on inheritance of rice grain shape gene
作者:
田颖于雪然杜怀东田蕾李培富
宁夏优势特色作物现代分子育种重点实验室/宁夏大学农学院,宁夏银川 750021
Author(s):
Tian Yinget al
关键词:
水稻粒形基因品质育种
Keywords:
-
分类号:
S511.032
DOI:
-
文献标志码:
A
摘要:
在现代水稻育种中,如何有效提高产量和改良稻米品质仍是亟待解决的关键问题。水稻粒形主要由粒长、粒宽和长宽比等因素组成,是影响水稻产量与品质的重要农艺性状。粒形是受多基因调控的数量性状,不同粒形基因之间存在着不同程度的相互作用。近年来,由于分子标记技术和现代遗传学的飞速发展,有更多的粒形基因逐渐被定位和克隆,将这些基因合理地应用于水稻育种,对增加水稻产量和有效改良粒形有至关重要的意义。综述水稻粒形的遗传特性,对已定位克隆的107个粒形相关基因的功能进行总结,发现粒形基因通过转录因子、G蛋白信号、泛素途径以及植物激素等途径进行调控,基因间的相互作用以及不同粒形基因在品质改良及育种中的应用,为水稻高产优质育种奠定了重要的理论基础和遗传资源,讨论并指出了水稻粒形基因研究中存在的问题,可为水稻育种今后的工作提供思路和参考。
Abstract:
-

参考文献/References:

[1]Ray D K,Ramankutty N,Mueller N D,et al. Recent patterns of crop yield growth and stagnation[J]. Nature Communications,2012,3(12):1293-1299.
[2]Song X J,Ashikari M. Toward an optimum return from crop plants[J]. Rice,2008,1(2):135-143.
[3]Xing Y Z,Zhang Q F. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology,2010,61:421-442.
[4]石春海. 水稻粒形与优质米育种[J]. 中国农学通报,1994,10(1):41-45.
[5]杨联松,白一松,张培江,等. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻,2001,16(4):48-50,54.
[6]莫惠栋. 我国稻米品质的改良[J]. 中国农业科学,1993,26(4):8-14.
[7]苪重庆,赵安常. 籼稻粒重及粒形性状F1遗传特性的双列分析[J]. 中国农业科学,1983,16(5):14-20.
[8]石春海,申宗坦. 早籼粒形的遗传和改良[J]. 中国水稻科学,1995,9(1):27-32.
[9]刘金波,胡文德,王宝祥,等. 水稻谷粒外观性状和粒重的遗传研究[J]. 浙江农业学报,2014,26(3):543-548.
[10]Shomura A,Izawa T,Ebana K,et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8):1023-1028.
[11]Weng J F,Gu S H,Wan X Y,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18(12):1199-1209.
[12]吕勇. 水稻产量相关性状的QTL定位与分析[D]. 泰安:山东农业大学,2017:38-40.
[13]石春海,申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析[J]. 作物学报,1996,22(1):36-42.
[14]符福鸿,王丰,黄文剑,等. 杂交水稻谷粒性状的遗传分析[J]. 作物学报,1994,20(1):39-45.
[15]方平平,林荔辉,李维明,等. 杂交稻外观品质性状的遗传控制[J]. 福建农业大学学报,2004,33(2):137-140.
[16]林建荣,吴明国,石春海. 粳型杂交稻稻米外观品质性状的遗传效应研究[J]. 中国水稻科学,2001,15(2):93-96.
[17]石春海,朱军. 籼稻稻米外观品质与其它品质性状的相关性分析[J]. 浙江农业大学学报,1994,20(6):606-610.
[18]徐辰武,张爱红,朱庆森. 籼粳杂交稻米品质性状的遗传分析[J]. 作物学报,1996,22(5):530-534.
[19]石春海,朱军. 籼型杂交稻稻米外观品质的种子和母体遗传效应分析[J]. 北京农业大学学报,1993,19(增刊1):69-74.
[20]敖雁,徐辰武,莫惠栋. 籼型杂种稻米品质性状的数量遗传分析[J]. 遗传学报,2000,27(8):706-712.
[21]石春海,申宗坦. 早籼稻谷粒性状遗传效应的分析[J]. 浙江农业大学学报,1994,20(4):405-410.
[22]林荔辉,吴为人. 水稻粒型和粒重的QTL定位分析[J]. 分子植物育种,2003,1(3):337-342.
[23]Xia D,Zhou H,Liu R J,et al. GL3.3,a novel QTL encoding a GSK3/SHAGGY-like kinase,epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant,2018,11(5):754-756.
[24]Fan C C,Xing Y Z,Mao H L,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics,2006,112(6):1164-1171.
[25]Zhang X J,Wang J F,Huang J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
[26]Gao X Y,Zhang J Q,Zhang X J,et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. The Plant Cell,2019,31(5):1077-1093.
[27]Wu W G,Liu X Y,Wang M H,et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants,2017,3:17064.
[28]Ishimaru K,Hirotsu N,Madoka Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics,2013,45(6):707-711.
[29]Yu J P,Xiong H Y,Zhu X Y,et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology,2017,15(1):28-45.
[30]Xiong H Y,Yu J P,Miao J L,et al. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J]. Plant Physiology,2018,178(1):451-467.
[31]Si L Z,Chen J Y,Huang X H,et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4):447-456.
[32]Heang D,Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice[J]. PLoS One,2012,7(2):e31325.
[33]Song X J,Huang W,Shi M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.
[34]Liu J F,Chen J,Zheng X M,et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants,2017,3:17043.
[35]Duan P G,Xu J S,Zeng D L,et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant,2017,10(5):685-694.
[37]Li Y B,Fan C C,Xing Y Z,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12):1266-1269.
[38]Xu C J,Liu Y,Li Y B,et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany,2015,66(9):2611-2623.
[39]Wang S K,Wu K,Yuan Q B,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[40]Wang S K,Li S,Liu Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8):949-954.
[41]Shi C L,Dong N Q,Guo T,et al. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway[J]. The Plant Journal:for Cell and Molecular Biology,2020,103(3):1174-1188.
[42]Sun L,Li X,Fu Y,et al. GS6,a member of the GRAS gene family,negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology,2013,55(10):938-949.
[43]Wang Y,Xiong G,Hu J,et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8):944-948.
[44]Zhao D,Li Q,Zhang C,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications,2016,2(1):1240-1253.
[45]Che R,Tong H,Shi B,et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants,2016,2(1):15195-15202.
[46]Hu J,Wang Y X,Fang Y X,et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant,2015,8(10):1455-1465.
[47]Ying J Z,Ma M,Bai C,et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant,2018,11(5):750-753.
[48]Fang N,Xu R,Huang L,et al. SMALL GRAIN 11 controls grain size,grain number and grain yield in rice[J]. Rice,2016,9(1):64-74.
[49]Sun W,Xu X H,Li Y P,et al. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice[J]. New Phytologist,2020,226(3):823-837.
[50]Ji X,Du Y X,Li F,et al. The basic helix‐loop‐helix transcription factor,OsPIL15,regulates grain size via directly targeting a purine permease gene OsPUP7 in rice[J]. Plant Biotechnology Journal,2019,17(8):1527-1537.
[51]Wei X J,Jiao G A,Lin H Y,et al. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development[J]. Journal of Integrative Plant Biology,2017,59(2):134-153.
[52]Hu Z J,Lu S J,Wang M J,et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant,2018,11(5):736-749.
[53]Liu J M,Park S J,Huang J,et al. Loose Plant Architecture1(LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice[J]. Journal of Experimental Botany,2016,67(6):1883-1895.
[54]Yamamuro C,Ihara Y,Wu X,et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell,2000,12(9):1591-1606.
[55]Nakamura A,Fujioka S,Sunohara H,et al. The role of OsBRI1 and its homologous genes,OsBRL1 and OsBRL3 in rice[J]. Plant Physiology,2006,140(2):580-590.
[56]Zhao J F,Wu C X,Yuan S J,et al. Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development[J]. Plant Science,2013,199-200(1):113-120.
[57]Miao J,Yang Z F,Zhang D P,et al. Mutation of RGG2,which encodes a type B heterotrimeric G protein γ subunit,increases grain size and yield production in rice[J]. Plant Biotechnology Journal,2019,17(3):650-664.
[58]Li S F,Wei X J,Ren Y L,et al. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm[J]. Scientific Reports,2017,7:40124.
[59]Chen J,Gao H,Zheng X M,et al. An evolutionarily conserved gene,FUWA,plays a role in determining panicle architecture,grain shape and grain weight in rice[J]. The Plant Journal,2015,83(3):427-438.
[60]Lyu J,Wang D K,Duan P G,et al. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice[J]. The Plant Cell,2020,32(6):1905-1918.
[61]Sui P F,Shi J L,Gao X Y,et al. H3K36 methylation is involved in promoting rice flowering[J]. Molecular Plant,2013,6(3):975-977.
[62]Zhang X Q,Sun J,Cao X F,et al. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice[J]. Plant Physiology,2015,169(3):2118-2128.
[63]Heang D,Sassa H.An atypical bhlh protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bhlh protein apg[J]. Breeding Science,2012,62(2):133-141.
[64]Jang S,An G,Li H Y.Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex[J]. Plant Physiology,2016,173(1):688-702.
[65]Ruan B P,Shang L G,Zhang B,et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. The New Phytologist,2020,227(2):629-640.
[66]Duan P G,Rao Y C,Zeng D L,et al. SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J]. The Plant Journal,2014,77(4):547-557.
[67]Yan D W,Zhou Y,Ye S H,et al. BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1,a DUF640 gene,is associated with grain shape,size and weight in rice[J]. Science China (Life Sciences),2013,56(3):275-283.
[68]Liu L C,Tong H N,Xiao Y H,et al. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):11102-11107.
[69]Hu X M,Qian Q,Xu T,et al. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice[J]. PLoS Genetics,2013,9(3):e1003391.
[70]Zhao S S,Zhao L,Liu F X,et al. NARROW AND ROLLED LEAF 2 regulates leaf shape,male fertility,and seed size in rice[J]. Journal of Integrative Plant Biology,2016,58(12):983-996.
[71]Wu S Y,Xie Y R,Zhang J J,et al. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice[J]. The Plant Cell,2015,27(10):2829-2845.
[72]Hong Z,Ueguchi-Tanaka M,Shimizu-Sato S,et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme,C-6 oxidase,prevents the organized arrangement and polar elongation of cells in the leaves and stem[J]. The Plant Journal,2002,32(4):495-508.
[73]Zhang D P,Zhang M Y,Liang J S. RGB1 regulates grain development and starch accumulation through its effect on OsYUC11-mediated auxin biosynthesis in rice endosperm cells[J]. Frontiers in Plant Science,2021,12:585174.
[74]Zhang J P,Yu Y,Feng Y Z,et al. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein[J]. Plant Physiology,2017,175(3):1175-1185.
[75]Dong N Q,Sun Y W,Guo T,et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nature Communications,2020,11:2629.
[76]Wu L W,Ren D Y,Hu S K,et al. Mutation of OsNaPRT1 in the NAD salvage pathway leads to withered leaf tips in rice[J]. Plant Physiology,2016,171(1):1898-2015.
[77]Ma X F,Cheng Z J,Qin R Z,et al. OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice[J]. The Plant Journal,2013,73(2):190-200.
[78]Luo J H,Liu H,Zhou T Y,et al. An-1 encodes a basic helix-loop-helix protein that regulates awn development,grain size,and grain number in rice[J]. The Plant Cell,2013,25(9):3360-3376.
[79]Wang E T,Wang J J,Zhu X D,et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics,2008,40(11):1370-1374.
[80]Zhu X L,Liang W Q,Cui X,et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther,a MYB domain protein[J]. The Plant Journal,2015,82(4):570-581.
[81]Xu R,Duan P G,Yu H Y,et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant,2018,11(6):860-873.
[82]Jiang Y H,Bao L,Jeong S Y,et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice[J]. The Plant Journal,2012,70(3):398-408.
[83]Gui J S,Liu C,Shen J H,et al. Grain setting defect1,encoding a remorin protein,affects the grain setting in rice through regulating plasmodesmatal conductance[J]. Plant Physiology,2014,166(3):1463-1478.
[84]She K C,Kusano H,Koizumi K,et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell,2010,22(10):3280-3294.
[85]Zhang B W,Wang X L,Zhao Z Y,et al. OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation[J]. Plant Physiology,2015,170(2):1149-1161.
[86]Guo T,Chen K,Dong N Q,et al. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice[J]. The Plant Cell,2018,30(4):871-888.
[87]Kitagawa K,Kurinami S,Oki K,et al. A novel kinesin 13 protein regulating rice seed length[J]. Plant and Cell Physiology,2010,51(8):1315-1329.
[88]Xia K F,Ou X J,Tang H D,et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14a-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J]. New Phytologist,2015,208(3):790-802.
[89]Fujisawa Y,Kato T,Ohki S,et al. Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(13):7575-7580.
[90]Tian X J,Li X F,Zhou W J,et al. Transcription factor OsWRKY53 positively regulates brassinosteroid signaling and plant architecture[J]. Plant Physiology,2017,175(3):1337-1349.
[91]Aya K,Hobo T,Sato-Izawa K,et al. A novel AP2-type transcription factor,SMALL ORGAN SIZE1,controls organ size downstream of an auxin signaling pathway[J]. Plant and Cell Physiology,2014,55(5):897-912.
[92]Schmidt R,Schippers J H M,Mieulet D,et al. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice[J]. Molecular Plant,2014,7(2):404-421.
[93]Zhang Y C,Yu Y,Wang C Y,et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology,2013,31(9):848-852.
[94]Qi Z Y,Xiong L Z. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice[J]. Journal of Integrative Plant Biology,2013,55(11):1119-1135.
[95]Matsushima R,Maekawa M,Kusano M,et al. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm[J]. Plant Physiology,2016,170(3):1445-1459.
[96]Liu S Y,Hua L,Dong S J,et al. OsMAPK6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J]. The Plant Journal,2015,84(4):672-681.
[97]Li J,Chu H W,Zhang Y H,et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. PLoS One,2012,7(3):e34231.
[98]Sakamoto T,Morinaka Y,Inukai Y,et al. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice[J]. The Plant Journal,2013,73(4):676-688.
[99]Duan E C,Wang Y H,Liu L L,et al. Pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice[J]. Plant Cell Reports,2016,35(6):1321-1331.
[100]Qian W J,Wu C,Fu Y P,et al. Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4[J]. Plant Molecular Biology,2017,93(1):197-208.
[101]Song X J,Kuroha T,Ayano M,et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight,yield,and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(1):76-81.
[102]Zhou S R,Xue H W.The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division[J]. Journal of Integrative Plant Biology,2020,62(6):847-864.
[103]Wang A H,Hou Q Q,Si L Z,et al. The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology,2019,180(4):2077-2090.
[104]Huang J,Li Z Y,Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice[J]. Scientific Reports,2016,6(1):29938-29951.
[105]Zhang S Z,Wu T,Liu S J,et al. Disruption of OsARF19 is critical for floral organ development and plant architecture in rice (Oryza sativa L.)[J]. Plant Molecular Biology Reporter,2016,34(4):748-760.
[106]Ma B,He S J,Duan K X,et al. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation[J]. Molecular Plant,2013,6(6):1830-1848.
[107]Jiang L Y,Ma X,Zhao S S,et al. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size[J]. The Plant Cell,2019,31(1):17-36.
[108]Li X B,Shi S Y,Tao Q D,et al. OsGASR9 positively regulates grain size and yield in rice (Oryza sativa)[J]. Plant Science,2019,286:17-27.
[109]Xu F,Fang J,Ou S J,et al. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant,Cell & Environment,2015,38(4):800-811.
[110]Abe Y,Mieda K,Ando T,et al. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice[J]. Genes & Genetic Systems,2010,85(5):327-339.
[111]Liu X B,Wei X J,Sheng Z H,et al. Polycomb protein OsFIE2 affects plant height and grain yield in rice[J]. PLoS One,2016,11(10):e0164748.
[112]Huang X L,Lu Z H,Wang X,et al. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3[J]. The Plant Journal,2016,87(3):305-317.
[113]Folsom J J,Begcy K,Hao X J,et al. Rice fertilization-independent endosperm1 regulates seed size under heat stress by controlling early endosperm development[J]. Plant Physiology,2014,165(1):238-248.
[114]Li D,Wang L,Wang M,et al. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal,2009,7(8):791-806.
[115]Nakagawa H,Tanaka A,Tanabata T,et al. SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice[J]. Plant Physiology,2011,158(3):1208-1219.
[116]Jin J,Hua L,Zhu Z F,et al. GAD1 encodes a secreted peptide that regulates grain number,grain length,and awn development in rice domestication[J]. The Plant Cell,2016,28(10):2453-2463.
[117]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[118]Huang K,Wang D K,Duan P G,et al. WIDE AND THICK GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J]. The Plant Journal,2017,91(5):849-860.
[119]Feng Z M,Wu C Y,Wang C M,et al. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice[J]. Journal of Experimental Botany,2016,67(14):4241-4253.
[120]Zhang M,Zhang B C,Qian Q,et al. Brittle Culm 12,a dual-targeting kinesin-4 protein,controls cell-cycle progression and wall properties in rice[J]. The Plant Journal,2010,63(2):312-328.
[121]Ren D Y,Cui Y J,Hu H T,et al. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice[J]. The Plant Journal,2019,100(4):813-824.
[122]Taguchi-Shiobara F,Kawagoe Y,Kato H,et al. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets[J]. Breeding Science,2011,61(1):17-25.
[123]Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[124]Zhang L,Wang R C,Xing Y D,et al. Separable regulation of POW1 in grain size and leaf angle development in rice[J]. Plant Biotechnology Journal,2021,19(12):2517-2531.
[125]Li Z Y,Tang L Q,Qiu J H,et al. Serine carboxypeptidase 46 regulates grain filling and seed germination in rice (Oryza sativa L.)[J]. PLoS One,2016,11(7):e0159737.
[126]Song W Y,Lee H S,Jin S R,et al. Rice PCR1 influences grain weight and Zn accumulation in grains[J]. Plant,Cell & Environment,2015,38(11):2327-2339.
[127]Hong Z,Ueguchi-Tanaka M,Fujioka S,et al. The rice brassinosteroid-deficient dwarf2 mutant,defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1,is rescued by the endogenously accumulated alternative bioactive brassinosteroid,dolichosterone[J]. The Plant Cell,2005,17(8):2243-2254.
[128]Yang Y H,Guo M,Sun S Y,et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications,2019,10:1949.
[129]Zhang L,Ren Y L,Lu B Y,et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice[J]. Journal of Experimental Botany,2015,67(3):633-647.
[130]Yang S Q,Li W Q,Miao H,et al. REL2,A gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice[J]. Rice,2016,9(1):37.
[131]Cao H,Li X Y,Wang Z,et al. Histone H2B monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice[J]. Plant Physiology,2015,168(4):1389-1405.
[132]Du Y W,He W,Deng C W,et al. Flowering-related RING protein 1 (FRRP1) regulates flowering time and yield potential by affecting histone H2B monoubiquitination in rice (Oryza sativa)[J]. PLoS One,2016,11(3):e0150458.
[133]Cho S H,Kang K,Lee S H,et al. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa)[J]. Journal of Experimental Botany,2016,67(6):1677-1687.
[134]Qi P,Lin Y S,Song X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research,2012,22(12):1666-1680.
[135]Sunohara H,Kawai T,Shimizu-Sato S,et al. A dominant mutation of TWISTED DWARF 1 encoding an alpha-tubulin protein causes severe dwarfism and right helical growth in rice[J]. Genes & Genetic Systems,2009,84(3):209-218.
[136]Segami S,Kono I,Ando T,et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J]. Rice,2012,5(1):4-13.
[137]Jin J,Shi J L,Liu B,et al. MORF-RELATED GENE702,a reader protein of trimethylated histone H3 lysine 4 and histone H3 lysine 36,is Involved in brassinosteroid-regulated growth and flowering time control in rice[J]. Plant Physiology,2015,168(4):1275-1285.
[138]Duan P G,Ni S,Wang J M,et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants,2016,2:15226.
[139]Xu Y F,Zhang L,Ou S J,et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communications,2020,11:5441.
[140]Takeda T,Toyofuku K,Matsukura C,et al. Sugar transporters involved in flowering and grain development of rice[J]. Journal of Plant Physiology,2001,158(4):465-470.
[141]Yan S,Zou G H,Li S J,et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics,2011,123(7):1173-1181.
[142]Gao X Y,Zhang X J,Lan H X,et al. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons[J]. BMC Plant Biology,2015,15(1):156-168.
[143]Hao J Q,Wang D K,Wu Y B,et al. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant,2021,14(8):1266-1280.
[144]Shi C L,Ren Y L,Liu L L,et al. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiology,2019,180(1):381-391.
[145]张剑霞. 利用分子标记辅助选择转移野生稻增产QTL和聚合水稻优良基因[D]. 武汉:华中农业大学,2009:20-27.
[146]杨梯丰,曾瑞珍,朱海涛,等. 水稻粒长基因GS3在聚合育种中的效应[J]. 分子植物育种,2010,8(1):59-66.
[147]Nan J Z,Feng X M,Wang C,et al. Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131[J]. Rice,2018,11(1):21.
[148]Li Y Y,Tao H J,Zhao X Q,et al. Molecular improvement of grain weight and yield in rice by using GW6 gene[J]. Rice Science,2014,21(3):127-132.
[149]刘燕德,欧阳爱国. 水稻粒形与稻米品质的相关性试验[J]. 农机化研究,2004,26(5):194-195.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(21):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(21):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(21):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(21):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(21):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(21):90.
[11]裔传灯,李玮,王德荣,等.水稻粒形基因GS3的功能标记开发与鉴定[J].江苏农业科学,2016,44(12):64.
 Yi Chuandeng,et al.Development and identification of functional markers for rice grain shape gene GS3[J].Jiangsu Agricultural Sciences,2016,44(21):64.

备注/Memo

备注/Memo:
收稿日期:2022-01-10
基金项目:宁夏重点研发计划重大项目(编号:2019BBF02022-01);宁夏农业育种专项课题(编号:2018NYYZ0302)。
作者简介:田颖(1997—),女,宁夏盐池人,硕士研究生,主要从事水稻遗传育种研究。E-mail:864223589@qq.com。
通信作者:李培富,博士,教授,主要从事水稻遗传育种研究。E-mail:peifuli@163.com。
更新日期/Last Update: 2022-11-05