|本期目录/Table of Contents|

[1]周晴晴,路艳琴,陆景倩,等.小麦赤霉病生防机制研究进展[J].江苏农业科学,2023,51(3):1-8.
 Zhou Qingqing,et al.Research progress on biological control mechanism of wheat scab[J].Jiangsu Agricultural Sciences,2023,51(3):1-8.
点击复制

小麦赤霉病生防机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第3期
页码:
1-8
栏目:
专论与综述
出版日期:
2023-02-05

文章信息/Info

Title:
Research progress on biological control mechanism of wheat scab
作者:
周晴晴 路艳琴 陆景倩 李松伟
河南科技学院资源与环境学院/河南省生物药肥研发与协同应用工程中心,河南新乡 453003
Author(s):
Zhou Qingqinget al
关键词:
小麦赤霉病防治方法生物防治作用机制
Keywords:
-
分类号:
S435.121.4+5
DOI:
-
文献标志码:
A
摘要:
由于小麦赤霉病的发生,世界各地小麦产量品质下降,造成了巨大的经济损失。从20世纪90年代开始,各国学者开始钻研应对此类病害的策略,其中化学防治和抗性育种存在危害人类健康、破坏环境和耗时长等弊端,而生物防治方法有利于健康、长远地防治小麦赤霉病。因此,利用生防机制来防治小麦赤霉病的生物防治方法,备受人们关注。本文对小麦赤霉病生物防治中的竞争、拮抗、诱导抗性的产生、溶菌、寄生以及其他生防机制进行总结,以期为以后学者们研究小麦赤霉病的生物防治提供参考,构建一个更加健全的小麦赤霉病绿色防治体系。
Abstract:
-

参考文献/References:

[1]Yang L,van der Lee T,Yang X,et al. Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles[J]. Phytopathology,2008,98(6):719-727.
[2]Yuan Q S,Yang P,Wu A B,et al. Variation in the microbiome,trichothecenes,and aflatoxins in stored wheat grains in Wuhan,China[J]. Toxins,2018,10(5):171.
[3]Zhang Z Q,Xu Y L,Wang J J,et al. Protective effect of selenomethionine on T-2 toxin-induced rabbit immunotoxicity[J]. Biological Trace Element Research,2022,200(1):172-182.
[4]Polak-S'liwińska M,Paszczyk B. Trichothecenes in food and feed,relevance to human and animal health and methods of detection:a systematic review[J]. Molecules,2021,26(2):454.
[5]Femenias A,Bainotti M B,Gatius F,et al. Standardization of near infrared hyperspectral imaging for wheat single kernel sorting according to deoxynivalenol level[J]. Food Research International,2021,139:109925.
[6]Zingales V,Fernández-Franzón M,Ruiz M J. Occurrence,mitigation and in vitro cytotoxicity of nivalenol,a type B trichothecene mycotoxin-updates from the last decade (2010—2020)[J]. Food and Chemical Toxicology,2021,152:112182.
[7]张紊玮,王艳玲,薛华丽,等. 镰刀菌单端孢霉烯族毒素的生物合成及分子调控研究进展[J]. 食品科学,2019,40(5):267-275.
[8]程洋洋. 禾谷镰刀菌Fg1产玉米赤霉烯酮条件及酿酒酵母 Y-912 对其控制的研究[D]. 镇江:江苏大学,2017:1-2.
[9]周雪婷. 粮食中DON的危害分析及快速测定方法研究进展[J]. 现代食品,2019(10):169-172.
[10]Chen Y,Kistler H C,Ma Z H. Fusarium graminearum trichothecene mycotoxins:biosynthesis,regulation,and management[J]. Annual Review of Phytopathology,2019,57:15-39.
[11]李兵,梁晋刚,朱育攀,等. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展,2021,11(5):647-652.
[12]林付根,黄婷婷,陈永明,等. 2015年盐城市小麦赤霉病的发生特点与防治对策探讨[J]. 安徽农业科学,2016,44(5):47-48,51.
[13]Ma Z Q,Xie Q,Li G Q,et al. Germplasms,genetics and genomics for better control of disastrous wheat Fusarium head blight[J]. Theoretical and Applied Genetics,2020,133(5):1541-1568.
[14]Anderson J A.Marker-assisted selection for Fusarium head blight resistance in wheat[J]. International Journal of Food Microbiology,2007,119(1/2):51-53.
[15]Collard B C Y,MacKill D J. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London,2008,363(1491):557-572.
[16]Krishnappa G,Savadi S,Tyagi B S,et al. Integrated genomic selection for rapid improvement of crops[J]. Genomics,2021,113(3):1070-1086.
[17]Pandit E,Pawar S,Barik S R,et al. Marker-assisted backcross breeding for improvement of submergence tolerance and grain yield in the popular rice variety ‘Maudamani’[J]. Agronomy,2021,11(7):1263.
[18]Yang Z P,Gilbert J,Somers D J,et al. Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat[J]. Molecular Breeding,2003,12(4):309-317.
[19]Kim S H,Vujanovic V. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production[J]. Applied Microbiology and Biotechnology,2016,100(12):5257-5272.
[20]Wei Z,Jousset A. Plant breeding goes microbial[J]. Trends in Plant Science,2017,22(7):555-558.
[21]李晶. 黄瓜枯萎病高效拮抗枯草芽孢杆菌的筛选及生防机制研究[D]. 哈尔滨:哈尔滨工业大学,2010:2-3.
[22]He J W,Bondy G S,Zhou T,et al. Toxicology of 3-epi-deoxynivalenol,a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8[J]. Food and Chemical Toxicology,2015,84:250-259.
[23]Ikunaga Y,Sato I,Grond S,et al. Nocardioides sp. strain WSN05-2,isolated from a wheat field,degrades deoxynivalenol,producing the novel intermediate 3-epi-deoxynivalenol[J]. Applied Microbiology and Biotechnology,2011,89(2):419-427.
[24]Kollarczik B,Gareis M,Hanelt M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs[J]. Natural Toxins,1994,2(3):105-110.
[25]Tan H,Hu Y C,He J,et al. Zearalenone degradation by two Pseudomonas strains from soil[J]. Mycotoxin Research,2014,30(4):191-196.
[26]Yu Y S,Qiu L P,Wu H,et al. Degradation of zearalenone by the extracellular extracts of Acinetobacter sp. SM04 liquid cultures[J]. Biodegradation,2011,22(3):613-622.
[27]Vujanovic V,Goh Y K. Sphaerodes mycoparasitica sp.nov.,a new biotrophic mycoparasite on Fusarium avenaceumF.graminearum and F.oxysporum[J]. Mycological Research,2009,113(10):1172-1180.
[28]Busko M,Chelkowski J,Popiel D,et al. Solid substrate bioassay to evaluate impact of Trichoderma on trichothecene mycotoxin production by Fusarium species[J]. Journal of the Science of Food and Agriculture,2008,88(3):536-541.
[29]Kim S H,Vujanovic V. Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica[J]. AMB Express,2017,7(1):145.
[30]Vujanovic V. Tremellomycetes yeasts in kernel ecological niche:early indicators of enhanced competitiveness of endophytic and mycoparasitic symbionts against wheat pathobiota[J]. Plants,2021,10(5):905.
[31]Legrand F,Picot A,Cobo-Díaz J F,et al. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F.graminearum[J]. Biological Control,2017,113:26-38.
[32]Roberti R,Veronesi A,Cesari A,et al. Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum[J]. Plant Science,2008,175(3):339-347.
[33]Hermosa R,Viterbo A,Chet I,et al. Plant-beneficial effects of Trichoderma and of its genes[J]. Microbiology,2012,158(1):17-25.
[34]Mukherjee P K,Horwitz B A,Herrera-Estrella A,et al. Trichoderma research in the genome era[J]. Annual Review of Phytopathology,2013,51:105-129.
[35]刘悦,曾凡松,龚双军,等. 解淀粉芽胞杆菌EA19菌株对小麦赤霉病的防治效果[J]. 植物保护学报,2020,47(6):1270-1276.
[36]王建伟. 小麦赤霉病菌拮抗菌的分离鉴定、发酵条件的优化及抗菌物质的研究[D]. 南京:南京农业大学,2010:10-11.
[37]陈雪,赵克明. 土传病害生物防治微生物的研究进展[J]. 现代农业,2011(7):34-35.
[38]Armando M R,Dogi C A,Poloni V,et al. In vitro study on the effect of Saccharomyces cerevisiae strains on growth and mycotoxin production by Aspergillus carbonarius and Fusarium graminearum[J]. International Journal of Food Microbiology,2013,161(3):182-188.
[39]Schisler D A,Khan N I,Boehm M J,et al. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat[J]. Plant Disease,2002,86(12):1350-1356.
[40]邓阳. Paenibacillus polymyxa JSa-9抗菌物质的结构鉴定及小麦生防应用研究[D]. 南京:南京农业大学,2012:12-13.
[41]陈文华,殷宪超,武德亮,等. 小麦赤霉病生物防治研究进展[J]. 江苏农业科学,2020,48(4):12-18.
[42]徐广军. 枯草芽孢杆菌BS3-1对小麦赤霉病(Fusarium graminearum)的生物防治研究[D]. 雅安:四川农业大学,2003:2-3.
[43]程超.产酶溶杆菌抗菌活性物质HSAF对小麦赤霉病菌(Fusarium graminearum)作用机制的初探[D]. 南京:南京农业大学,2016:69-70.
[44]Kavitha K,Mathiyazhagan S,Sendhilvel V,et al. Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode[J]. Archives of Phytopathology and Plant Protection,2005,38(1):69-76.
[45]林玲,乔勇升,顾本康,等. 植物内生细菌及其生物防治植物病害的研究进展[J]. 江苏农业学报,2008,24(6):969-974.
[46]Selin C,Habibian R,Poritsanos N,et al. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum,but do play a role in biofilm formation[J]. FEMS Microbiology Ecology,2009,71(1):73-83.
[47]Kilani-Feki O,Khiari O,Culioli G,et al. Antifungal activities of an endophytic Pseudomonas[J]. Biotechnology Letters,2010,32(9):1279-1285.
[48]Ramarathnam R,Shen B,Yu C,et al. Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp.,antagonistic to fungal pathogens of canola and wheat[J]. Canadian Journal of Microbiology,2007,53(7):901-911.
[49]Hu W Q,Gao Q X,Hamada M S,et al. Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum[J]. Phytopathology,2014,104(12):1289-1297.
[50]杨楠. 生防菌株PC60对小麦赤霉病的生物防治机理研究[D]. 杭州:浙江大学,2017:37-38.
[51]李宇,赖珍珠,李佳岭,等. 放线菌Streptomyces nojiriensis SCSIO m34-1吩嗪生物碱类次级代谢产物的研究[J]. 天然产物研究与开发,2018,30(10):1663-1668,1705.
[52]Wang J,Liu J,Chen H,et al. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB[J]. Applied Microbiology and Biotechnology,2007,76(4):889-894.
[53]Gong A D,Li H P,Yuan Q S,et al. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum[J]. PLoS One,2015,10(2):e0116871.
[54]朱明杰. 禾谷镰刀菌拮抗菌的筛选及抑菌特性研究[D]. 郑州:河南工业大学,2013:38-39.
[55]Hatano T,Uebayashi H,Ito H,et al. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus[J]. Chemical & Pharmaceutical Bulletin,1999,47(8):1121-1127.
[56]Singh D N,Verma N,Raghuwanshi S,et al. Antifungal anthraquinones from Saprosma fragrans[J]. Bioorganic & Medicinal Chemistry Letters,2006,16(17):4512-4514.
[57]田月娥,车志平,刘圣明,等. 几种醌类化合物抑菌活性研究[J]. 农药,2017,56(11):844-846.
[58]韩传玉. 小麦赤霉病生防菌的筛选及Frenolicin B抗病活性研究[D]. 哈尔滨:东北农业大学,2020:89-90.
[59]袁青松. 细菌S76拮抗禾谷镰刀菌机理及小麦储藏中菌群和毒素变异研究[D]. 武汉:华中农业大学,2018:59-60.
[60]陆长婴,季明东,李沛元,等. 抗菌蛋白“N1235”对小麦赤霉病菌抗生活性测定及药效试验[J]. 农业环境与发展,2000,17(1):23-24.
[61]裴韬,任大明,石皎. 小麦赤霉病拮抗菌P72抗菌物质的分离纯化和性质研究[J]. 安徽农业科学,2009,37(6):2576-2577,2597.
[62]Ryu C M,Farag M A,Hu C H,et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(8):4927-4932.
[63]Compant S,Duffy B,Nowak J,et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles,mechanisms of action,and future prospects[J]. Applied and Environmental Microbiology,2005,71(9):4951-4959.
[64]乔俊卿,张心宁,梁雪杰,等. 枯草芽孢杆菌PTS-394诱导番茄对灰霉病的系统抗性[J]. 中国生物防治学报,2017,33(2):219-225.
[65]陈小洁,王其,张欣悦,等. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报,2019,31(5):766-776.
[66]徐莉,陈小洁,曹静婷,等. 小麦赤霉病生防菌DZSG23的抗病机制[J]. 浙江农业学报,2020,32(11):2001-2008.
[67]王路遥. 小麦禾谷镰孢病害的生物防治及其机理研究[D]. 南京:南京农业大学,2018:13-14.
[68]Jochum C C,Osborne L E,Yuen G Y. Fusarium head blight biological control with Lysobacter enzymogenes strain C3[J]. Biological Control,2006,39(3):336-344.
[69]王纯婷. 产酶溶杆菌抗菌活性物质产率促进及其应用[D]. 南京:南京农业大学,2014:1-2.
[70]林福呈,李德葆. 枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用[J]. 植物病理学报,2003,33(2):174-177.
[71]高学文,姚仕义,Pham H,等. 枯草芽孢杆菌B2菌株产生的抑菌活性物质分析[J]. 中国生物防治,2003,19(4):175-179.
[72]Kim S H,Lahlali R,Karunakaran C,et al. Specific mycoparasite-Fusarium graminearum molecular signatures in germinating seeds disabled Fusarium head blight pathogens infection[J]. International Journal of Molecular Sciences,2021,22(5):2461.
[73]Vujanovic V,Goh Y K. Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol-and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes[J]. FEMS Microbiology Letters,2011,316(2):136-143.
[74]Vujanovic V,Goh Y K. qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum:in vitro and in planta assays[J]. Archives of Microbiology,2012,194(8):707-717.
[75]Vujanovic V,Kim S H.Adaptability of mitosporic stage in Sphaerodes mycoparasitica towards its mycoparasitic-polyphagous lifestyle[J]. Mycologia,2017,109(5):701-709.
[76]Naranjo-Ortiz M A,Gabaldón T. Fungal evolution:major ecological adaptations and evolutionary transitions[J]. Biological Reviews of the Cambridge Philosophical Society,2019,94(4):1443-1476.
[77]Goh Y K,Vujanovic V. Sphaerodes quadrangularis biotrophic mycoparasitism on Fusarium avenaceum[J]. Mycologia,2010,102(4):757-762.
[78]Vujanovic V,Daida M A,Daida P. qPCR assessment of aurofusarin gene expression in mycotoxigenic Fusarium species challenged with mycoparasitic and chemical control agents[J]. Biological Control,2017,109:51-57.
[79]Lutz M P,Feichtinger G,Défago G,et al. Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1[J]. Applied and Environmental Microbiology,2003,69(6):3077-3084.
[80]Mukherjee M,Mukherjee P K,Horwitz B A,et al. Trichoderma-plant-pathogen interactions:advances in genetics of biological control[J]. Indian Journal of Microbiology,2012,52(4):522-529.
[81]Chen Y,Wang J,Yang N,et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J]. Nature Communications,2018,9(1):3429.
[82]Bujold I,Paulitz T C,Carisse O. Effect of Microsphaeropsis sp.on the production of perithecia and ascospores of Gibberella zeae[J]. Plant Disease,2001,85(9):977-984.
[83]Palazzini J M,Groenenboom-de Haas B H,Torres A M,et al. Biocontrol and population dynamics of Fusarium spp.on wheat stubble in Argentina[J]. Plant Pathology,2013,62(4):859-866.
[84]Palazzini J M,Yerkovich N,Alberione E,et al. Reprint of “An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions”[J]. Plant Gene,2017,11:2-7.
[85]Palazzini J M,Ramirez M L,Torres A M,et al. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat[J]. Crop Protection,2007,26(11):1702-1710.
[86]Larran S,Simón M R,Moreno M V,et al. Endophytes from wheat as biocontrol agents against tan spot disease[J]. Biological Control,2016,92:17-23.
[87]Díaz Herrera S,Grossi C,Zawoznik M,et al. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum[J]. Microbiological Research,2016,186/187:37-43.
[88]Huang Y L,Kuang Z Y,Wang W F,et al. Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat[J]. Biological Control,2016,98:27-33.
[89]Dunlap C A,Schisler D A,Price N P,et al. Cyclic lipopeptide profile of three Bacillus subtilis strains;antagonists of Fusarium head blight[J]. The Journal of Microbiology,2011,49(4):603-609.
[90]Palazzini J M,Alberione E,Torres A,et al. Biological control of Fusarium graminearum sensu stricto,causal agent of Fusarium head blight of wheat,using formulated antagonists under field conditions in Argentina[J]. Biological Control,2016,94:56-61.
[91]Baffoni L,Gaggia F,Dalanaj N,et al. Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat[J]. BMC Microbiology,2015,15(1):242.

相似文献/References:

[1]仇学平,仇广灿,谷莉莉,等.2012年江苏省盐城市盐都区小麦赤霉病大发生的特点及影响因素[J].江苏农业科学,2013,41(06):111.
 Qiu Xueping,et al.Influential factors and characteristics of wheat scab outbreak in Yandu District,Yancheng City,Jiangsu Province in 2012[J].Jiangsu Agricultural Sciences,2013,41(3):111.
[2]徐云,陈爱玉,洪冠中,等.南通地区小麦赤霉病发生潜势气象预报模型的建立及检验[J].江苏农业科学,2013,41(08):144.
 Xu Yun,et al.Establishment and verification of potential grades prediction model of wheat scab in Nantong region[J].Jiangsu Agricultural Sciences,2013,41(3):144.
[3]巫丽君,陈翔,魏爱明,等.江苏省镇江市丹徒区小麦赤霉病流行程度预报[J].江苏农业科学,2013,41(09):113.
 Wu Lijun,et al.Forecast on wheat scab prevalence degree in Dantu District of Zhenjiang,Jiangsu[J].Jiangsu Agricultural Sciences,2013,41(3):113.
[4]滕涛,梁利国,谢骏.大宗淡水鱼细菌性疾病研究进展[J].江苏农业科学,2015,43(11):8.
 Teng Tao,et al.Research progress on pathogenic bacteria of conventional freshwater fish[J].Jiangsu Agricultural Sciences,2015,43(3):8.
[5]吉沐祥,李国平,芮东明,等.江苏省鲜食葡萄病虫害绿色防控技术规程[J].江苏农业科学,2015,43(07):107.
 Ji Muxiang,et al.Green prevention and control technical regulations of diseases and insect pests of table grape in Jiangsu Province[J].Jiangsu Agricultural Sciences,2015,43(3):107.
[6]徐云,高苹,缪燕,等.江苏省小麦赤霉病气象条件适宜度判别指标[J].江苏农业科学,2016,44(08):188.
 Xu Yun,et al.Discriminant Index for adaptability category of meteorological conditions of wheat head blight in Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(3):188.
[7]唐超,陈远超,朱春晖,等.小西葫芦黄花叶病毒研究进展[J].江苏农业科学,2016,44(09):18.
 Tang Chao,et al.Research progress of zucchini yellow mosaic virus[J].Jiangsu Agricultural Sciences,2016,44(3):18.
[8]陈然,方祖凯,李黎,等.N-苄氧羰基-氨基酸-[XCZ101.tif;%97%97]霉灵的合成及杀菌活性[J].江苏农业科学,2016,44(10):185.
 Chen Ran,et al.Synthesis and fungicidal activity of N-carbobenzoxy-amino acid-hymexazol[J].Jiangsu Agricultural Sciences,2016,44(3):185.
[9]张鹏,邓渊钰,杨学明,等.小麦茎基腐病菌鉴定及不同药剂防治效果分析[J].江苏农业科学,2016,44(11):142.
 Zhang Peng,et al.Identification of wheat stem rot pathogen and analysis of control effects of different pesticides[J].Jiangsu Agricultural Sciences,2016,44(3):142.
[10]郑棚峻,张宇,张松柏,等.葫芦科作物重要种传病毒研究进展[J].江苏农业科学,2017,45(03):5.
 Zheng Pengjun,et al.Research progress of main seed-born viruses in Cucurbitaceae crops[J].Jiangsu Agricultural Sciences,2017,45(3):5.

备注/Memo

备注/Memo:
收稿日期:2022-05-04
基金项目:河南省科技攻关项目(编号:212102110149、202102110224);河南科技学院博士科研启动项目(编号:20200123);河南省高等学校基础研究计划(编号:21A210006)。
作者简介:周晴晴(1997—),女,河北唐山人,硕士研究生,主要从事小麦有害生物绿色防控研究。E-mail:charging2021@126.com。
通信作者:李松伟,博士,硕士生导师,主要从事植物有害生物综合防控研究。E-mail:lear9999@163.com。
更新日期/Last Update: 2023-02-05