|本期目录/Table of Contents|

[1]杨彬,周嘉润,沈玉婷,等.水稻种子活力性状全基因组关联分析研究进展[J].江苏农业科学,2023,51(3):16-21.
 Yang Bin,et al.Research progress on genome-wide association analysis of rice seed vigor[J].Jiangsu Agricultural Sciences,2023,51(3):16-21.
点击复制

水稻种子活力性状全基因组关联分析研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第3期
页码:
16-21
栏目:
专论与综述
出版日期:
2023-02-05

文章信息/Info

Title:
Research progress on genome-wide association analysis of rice seed vigor
作者:
杨彬 周嘉润 沈玉婷 孙曼嘉 吕凡 黄伟聪 郑奕雄 万小荣
仲恺农业工程学院/广州市特色作物种质资源研究与利用重点实验室,广东广州 510225
Author(s):
Yang Binet al
关键词:
水稻种子活力GWASQTLs候选基因
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
水稻是我国最重要的粮食作物之一,提高其产量一直是水稻育种家的不懈追求。水稻种子活力是一个重要的农艺性状,与产量和品质等性状密切相关。因此,开展水稻种子活力关键基因挖掘,选育高种子活力的水稻品种,对我国目前水稻直播栽培模式的推广应用,保障直播稻安全生产具有重要意义。全基因组关联分析(GWAS)是利用全基因组范围内大量的分子标记,以连锁不平衡(LD)为基础,用于研究动植物复杂数量性状遗传基础的一种高效方法。近年来,利用GWAS解析水稻种子活力自然变异的遗传基础取得了一定的进展。本文归纳了水稻种子活力表型鉴定的主要4类指标,概述了GWAS技术的研究优势及一般研究策略,重点介绍了近年来基于GWAS定位的水稻种子活力相关数量性状基因座(QTLs)及鉴定的10个水稻种子活力关键基因。最后,对目前GWAS解析水稻种子活力遗传基础存在的不足进行了剖析,并对今后种子活力相关性状的遗传研究提出了一些建议,以期为未来利用分子设计育种提高水稻种子活力提供理论参考。
Abstract:
-

参考文献/References:

[1]张红生,胡晋. 种子学[M]. 2版.北京:科学出版社,2015.
[2]孙群,王建华,孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学,2007,40(1):48-53.
[3]Bweley J,Bradford K,Hilhorst H,et al. Seeds:physiology of development,germination and dormancy[M]. New York:Springer,2013.
[4]张红生,程金平,王健康,等. 水稻种子活力相关基因鉴定及分子调控机制[J]. 南京农业大学学报,2019,42(2):191-200.
[5]张安鹏,钱前,高振宇. 水稻种子活力的研究进展[J]. 中国水稻科学,2018,32(3):296-303.
[6]Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci analysis for rice seed vigor during the germination stage[J]. Journal of Zhejiang University Science B,2010,11(12):958-964.
[7]Liu L F,Lai Y Y,Cheng J P,et al. Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice[J]. PLoS One,2014,9(12):e115732.
[8]Xie L X,Tan Z W,Zhou Y,et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. Journal of Integrative Plant Biology,2014,56(8):749-759.
[9]Dimaano N G B,Ali J,Mahender A,et al. Identification of quantitative trait loci governing early germination and seedling vigor traits related to weed competitive ability in rice[J]. Euphytica,2020,216(10):159.
[10]Abe A,Takagi H,Fujibe T,et al. OsGA20ox1,a candidate gene for a major QTL controlling seedling vigor in rice[J]. Theoretical and Applied Genetics,2012,125(4):647-657.
[11]Zhang A P,Liu C L,Chen G,et al. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length[J]. Breeding Science,2017,67(3):307-315.
[12]Singh U M,Yadav S,Dixit S,et al. QTL hotspots for early vigor and related traits under dry direct-seeded system in rice (Oryza sativa L.)[J]. Frontiers in Plant Science,2017,8:286.
[13]Xu L,Guo L Z,You H,et al. Novel haplotype combinations reveal enhanced seedling vigor traits in rice that can accurately predict dry biomass accumulation in seedlings[J]. Breeding Science,2019,69(4):651-657.
[14]Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci controlling rice seed germination under salt stress[J]. Euphytica,2011,178(3):297-307.
[15]Liu F X,Xu W Y,Song Q,et al. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice[J]. Molecular Plant,2013,6(3):757-767.
[16]Jiang S K,Yang C,Xu Q,et al. Genetic dissection of germinability under low temperature by building a resequencing linkage map in Japonica rice[J]. International Journal of Molecular Sciences,2020,21(4):1284.
[17]Najeeb S,Ali J,Mahender A,et al. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination-and early seedling vigor-related traits in rice (Oryza sativa L.)[J]. Molecular Breeding,2020,40(1):10.
[18]Jahan N,Javed M A,Khan A,et al. Genetic architecture of Al3+ toxicity tolerance in rice F2:3 populations determined through QTL mapping[J]. Ecotoxicology,2021,30(5):794-805.
[19]Cui H,Peng B,Xing Z,et al. Molecular dissection of seedling-vigor and associated physiological traits in rice[J]. Theoretical and Applied Genetics,2002,105(5):745-753.
[20]崔克辉,彭少兵,邢永忠,等. 水稻幼苗特性与籽粒大小关系的分子检测[J]. 植物学报,2002,44(6):702-707.
[21]Wang W Y S,Barratt B J,Clayton D G,et al. Genome-wide association studies:theoretical and practical concerns[J]. Nature Reviews Genetics,2005,6(2):109-118.
[22]Yu J M,Buckler E S.Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology,2006,17(2):155-160.
[23]Korte A,Farlow A.The advantages and limitations of trait analysis with GWAS:a review[J]. Plant Methods,2013,9:29.
[24]Tibbs Cortes L,Zhang Z W,Yu J M.Status and prospects of genome-wide association studies in plants[J]. The Plant Genome,2021,14(1):e20077.
[25]Han B,Huang X H.Sequencing-based genome-wide association study in rice[J]. Current Opinion in Plant Biology,2013,16(2):133-138.
[26]Wang F M,Longkumer T,Catausan S C,et al. Genome-wide association and gene validation studies for early root vigour to improve direct seeding of rice[J]. Plant,Cell & Environment,2018,41(12):2731-2743.
[27]Guo T,Yang J,Li D X,et al. Integrating GWAS,QTL,mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.)[J]. Molecular Breeding,2019,39(6):1-16.
[28]Zhao J,Yang B,Li W J,et al. A genome-wide association study reveals that the glucosyltransferase OsIAGLU regulates root growth in rice[J]. Journal of Experimental Botany,2021,72(4):1119-1134.
[29]Li W J,Yang B,Xu J Y,et al. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice[J]. The Plant Journal,2021,108(2):478-491.
[30]Menard G,Sandhu N,Anderson D,et al. Laboratory phenomics predicts field performance and identifies superior indica haplotypes for early seedling vigour in dry direct-seeded rice[J]. Genomics,2021,113(6):4227-4236.
[31]Yuan Z Y,Fan K,Wang Y T,et al. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances[J]. Plant Physiology,2021,186(1):469-482.
[32]Yang B,Chen M M,Zhan C F,et al. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study[J]. Journal of Experimental Botany,2022,73(11):3446-3461.
[33]Peng L L,Sun S,Yang B,et al. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice[J]. Plant Biotechnology Journal,2022,20(3):485-498.
[34]Sun S Y,Wang T,Wang L L,et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications,2018,9:2523.
[35]Wang H,Lee A R,Park S Y,et al. Genome-wide association study reveals candidate genes related to low temperature tolerance in rice (Oryza sativa) during germination[J]. 3 Biotech,2018,8(5):235.
[36]Wang X,Zou B H,Shao Q L,et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany,2017,69(3):413-421.
[37]Yang T F,Zhou L,Zhao J L,et al. The candidate genes underlying a stably expressed QTL for low temperature germinability in rice (Oryza sativa L.)[J]. Rice,2020,13(1):74.
[38]Yang J,Yang M,Su L,et al. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice[J]. Plant Science,2020,301:110669.
[39]Wang D,Liu Z,Xiao Y H,et al. Association mapping and functional analysis of rice cold tolerance QTLs at the bud burst stage[J]. Rice,2021,14(1):98.
[40]Su L,Yang J,Li D D,et al. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice[J]. Rice,2021,14(1):1.
[41]Shi Y Y,Gao L L,Wu Z C,et al. Genome-wide association study of salt tolerance at the seed germination stage in rice[J]. BMC Plant Biology,2017,17(1):92.
[42]Castano-Duque L,Ghosal S,Quilloy F A,et al. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment[J]. Plant Physiology,2021,186(2):1042-1059.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(3):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(3):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(3):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(3):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(3):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(3):90.

备注/Memo

备注/Memo:
收稿日期:2022-03-07
基金项目:国家自然科学基金(编号:32101802、32071737、31770652);广东大学生科技创新培育专项资金(编号:pdjh2020b0290);广州市特色作物种质资源研究与利用重点实验室(编号:202002010010)。
作者简介:杨彬(1991—),男,福建漳州人,博士,讲师,研究方向为种子科学与技术。E-mail:yangbin@zhku.edu.cn。
通信作者:万小荣,博士,教授,研究方向为作物生理与分子生物学,E-mail:biowxr@126.com;郑奕雄,教授,研究方向为作物育种与栽培,E-mail:gdsscqs@163.com。
更新日期/Last Update: 2023-02-05