|本期目录/Table of Contents|

[1]向旭敏,肖春梅,熊雨舟,等.硒降低稻米主要重金属污染的研究进展[J].江苏农业科学,2023,51(7):23-30.
 Xiang Xumin,et al.Research progress of selenium reducing heavy metal pollution in rice[J].Jiangsu Agricultural Sciences,2023,51(7):23-30.
点击复制

硒降低稻米主要重金属污染的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第7期
页码:
23-30
栏目:
专论与综述
出版日期:
2023-04-05

文章信息/Info

Title:
Research progress of selenium reducing heavy metal pollution in rice
作者:
向旭敏1234肖春梅234熊雨舟234汪园234程华23饶申23李丽123
1.粮食作物种质创新与遗传改良湖北省重点实验室,湖北武汉 430023;2.武汉轻工大学国家富硒农产品加工技术与研发专业中心,湖北武汉 430023;3.武汉轻工大学硒科学与工程现代产业学院,湖北武汉 430023; 4.武汉轻工大学生命科学与技术学院,湖北武汉 430023
Author(s):
Xiang Xuminet al
关键词:
水稻重金属胁迫作用机制重金属污染
Keywords:
-
分类号:
S511.01;X53
DOI:
-
文献标志码:
A
摘要:
稻米是人类的主食之一,对保障全球粮食供应和营养安全至关重要,但由于各种人为或自然因素,它也是砷、镉和汞等重金属(类)的最大储存库之一。高浓度重金属可引起植物中毒,还可通过食物链进入动物和人体引发疾病。硒(Se)对生物体有保护作用。本文综述了硒对水稻砷、镉、汞吸收、转运、分配和耐受的影响:通过对As(Ⅲ)、As(Ⅳ)的竞争抑制,与Hg2+、Cd2+共沉淀或结合成稳定难溶的络合物,或改变水稻根际微生物的种类和活性、根表铁膜的形成与数量,直接或间接地降低植物对重金属的摄取以及由根系向地上部的转运;通过形成重金属-硒醇复合物并区室化至液泡中,影响重金属在水稻植株中的分布;通过提高水稻抗氧化能力,增强对重金属的耐受;通过调控基因的表达,改变根系形态发育和对矿质元素的吸收,改善光合作用,缓和水稻植株在重金属暴露下的毒害症状。探讨了硒在治理水稻重金属污染中面临的问题,以期为降低水稻籽粒中砷、镉、汞等重金属含量,提高硒水平的研究提供理论依据和可行措施。
Abstract:
-

参考文献/References:

[1]Shifaw E. Review of heavy metals pollution in China in agricultural and urban soils[J]. Journal of Health & Pollution,2018,8(18):180607.
[2]García-Carmona M,Romero-Freire A,Aragón M S,et al. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic[J]. Journal of Environmental Management,2017,191:228-236.
[3]中华人民共和国环境保护部,中华人民共和国国土资源部. 全国土壤污染状况调查公报(2014年4月17日)[J]. 环境教育,2014(6):8-10.
[4]Tan J A,Zhu W Y,Wang W Y,et al. Selenium in soil and endemic diseases in China[J]. Science of the Total Environment,2002,284(1/2/3):227-235.
[5]Li S M,Bauelos G S,Wu L H,et al. The changing selenium nutritional status of Chinese residents[J]. Nutrients,2014,6(3):1103-1114.
[6]Kerchev P,Meer T,Sujeeth N,et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants[J]. Biotechnology Advances,2020,40:107503.
[7]Lanza M G D B. Roles of selenium in mineral plant nutrition:ROS scavenging responses against abiotic stresses[J]. Plant Physiology and Biochemistry,2021,164:27-43.
[8]Wiszniewska A. Priming strategies for benefiting plant performance under toxic trace metal exposure[J]. Plants,2021,10(4):623.
[9]Gupta M,Gupta S. An overview of selenium uptake,metabolism,and toxicity in plants[J]. Frontiers in Plant Science,2017,7:2074.
[10]Chauhan R,Awasthi S,Tripathi P,et al. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety,2017,138:47-55.
[11]Mostofa M G. Phenotypical,physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants[J]. Chemosphere,2017,178:212-223.
[12]张联合,李友军,苗艳芳,等. pH对水稻离体根系吸收亚硒酸盐生理机制的影响[J]. 土壤学报,2010,47(3):523-528.
[13]Zhao X Q,Mitani N,Yamaji N,et al. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice[J]. Plant Physiology,2010,153(4):1871-1877.
[14]Zhang L H,Hu B,Deng K,et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation[J]. Plant Biotechnology Journal,2019,17(6):1058-1068.
[15]Wang K,Wang Y Q,Li K,et al. Uptake,translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.)[J]. Journal of Nanobiotechnology,2020,18(1):103.
[16]Terry N,Zayed A M,de Souza M P,et al. Selenium in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:401-432.
[17]Yang G L,Zheng M M,Tan A J,et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology,2021,10(6):544.
[18]Riaz M,Kamran M,Rizwan M,et al. Cadmium uptake and translocation:selenium and silicon roles in Cd detoxification for the production of low Cd crops:a critical review[J]. Chemosphere,2021,273:129690.
[19]徐向华,刘传平,唐新莲,等. 叶面喷施硒硅复合溶胶抑制水稻砷积累效应研究[J]. 生态环境学报,2014,23(6):1064-1069.
[20]Kumar A,Singh R P,Singh P K,et al. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.)[J]. Ecotoxicology,2014,23(7):1153-1163.
[21]Hu Y,Duan G L,Huang Y Z,et al. Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings[J]. Environmental Science and Pollution Research,2014,21(5):3955-3962.
[22]Liao G Y,Xu Y,Chen C,et al. Root application of selenite can simultaneously reduce arsenic and cadmium accumulation and maintain grain yields,but show negative effects on the grain quality of paddy rice[J]. Journal of Environmental Management,2016,183:733-741.
[23]Guo J H,Yan C Z,Luo Z X,et al. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(Ⅱ) and arsenic(Ⅴ) adsorption[J]. Journal of Environmental Sciences,2019,85:168-176.
[24]Wang K,Wang Y Q,Wan Y N,et al. The fate of arsenic in rice plants (Oryza sativa L.):influence of different forms of selenium[J]. Chemosphere,2021,264:128417.
[25]Camara A Y,Wan Y N,Yu Y,et al. Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety,2018,148:869-875.
[26]Lv H Q,Chen W X,Zhu Y M,et al. Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice[J]. Environmental Pollution,2020,262:114283.
[27]Pandey C,Gupta M. Selenium amelioration of arsenic toxicity in rice shows genotypic variation:a transcriptomic and biochemical analysis[J]. Journal of Plant Physiology,2018,231:168-181.
[28]Feng R W. The roles of selenium in protecting plants against abiotic stresses[J]. Environmental and Experimental Botany,2013,87:58-68.
[29]管远清,李无双,殷行行,等. 不同水分条件下硒对水稻镉吸收与转运的影响[J]. 天津大学学报(自然科学与工程技术版),2018,51(12):1309-1315.
[30]李海龙,李香真,聂三安,等. 水分管理对Cd-Pb-Zn污染土壤有效态及水稻根际细菌群落的影响[J]. 农业环境科学学报,2018,37(7):1456-1467.
[31]Huang Q Q,Xu Y M,Liu Y Y,et al. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research,2018,25(31):31175-31182.
[32]Wan Y N,Yu Y,Wang Q,et al. Cadmium uptake dynamics and translocation in rice seedling:influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety,2016,133:127-134.
[33]Cui J,Liu T X,Li Y D,et al. Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes[J]. Science of the Total Environment,2018,644:602-610.
[34]Qi W Y,Li Q,Chen H,et al. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species[J]. Journal of Hazardous Materials,2021,417:125900.
[35]徐境懋,顾明华,韦燕燕,等. 纳米硒和亚硒酸盐对镉污染土壤中水稻镉积累的影响[J]. 南方农业学报,2021,52(10):2727-2734.
[36]程和发,高旭,罗晴. 大米汞污染与摄食大米甲基汞暴露研究进展[J]. 农业环境科学学报,2019,38(8):1665-1676.
[37]Wang C R,Cheng T T,Liu H T,et al. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils[J]. Journal of Environmental Sciences,2021,103:336-346.
[38]Feng X B,Li P,Qiu G L,et al. Human exposure to methylmercury through rice intake in mercury mining areas,Guizhou Province,China[J]. Environmental Science & Technology,2008,42(1):326-332.
[39]Zhang Z Z,Yuan L X,Qi S H,et al. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils[J]. Science of the Total Environment,2019,688:1228-1235.
[40]Chen L,Liang S,Liu M D,et al. Trans-provincial health impacts of atmospheric mercury emissions in China[J]. Nature Communications,2019,10:1484.
[41]Truong H,Chen Y W,Belzile N,et al. Effect of sulfide,selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans[J]. Science of the Total Environment,2013,449:373-384.
[42]周鑫斌,于淑慧,王文华,等. 土壤施硒对水稻根表铁膜形成和汞吸收的影响[J]. 西南大学学报(自然科学版),2014,36(1):91-95.
[43]倪刚,胡承孝,李长印,等. 硒与重金属互作的植物根际过程研究进展[J]. 中国农学通报,2021,37(1):78-83.
[44]李云云,赵甲亭,高愈希,等. 根表铁膜的形成和添加硒对水稻吸收转运无机汞和甲基汞的影响[J]. 生态毒理学报,2014,9(5):972-977.
[45]Feng R W,Zhao P P,Zhu Y M,et al. Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants:the main mechanisms,concerns,and risks[J]. Science of the Total Environment,2021,771:144776.
[46]Feng X M,Han L,Chao D Y,et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice[J]. Journal of Hazardous Materials,2017,331:246-256.
[47]洪涛,孔祥胜,岳祥飞. 贵州丹寨县土壤-水稻中硒和重金属的积累及迁移特征[J]. 地球与环境,2022,50(1):58-65.
[48]Jiao L S,Zhang L Q,Zhang Y Z,et al. Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice[J]. Environmental Pollution,2022,301:118980.
[49]Rizwan M,Ali S,Rehman M Z U,et al. Effects of selenium on the uptake of toxic trace elements by crop plants:a review[J]. Critical Reviews in Environmental Science and Technology,2021,51(21):2531-2566.
[50]Sahay S,Khan E,Praveen A,et al. Sulphur potentiates selenium to alleviate arsenic-induced stress by modulating oxidative stress,accumulation and thiol-ascorbate metabolism in Brassica juncea L.[J]. Environmental Science and Pollution Research,2020,27(11):11697-11713.
[51]Ding Y Z,Di X R,Norton G J,et al. Selenite foliar application alleviates arsenic uptake,accumulation,migration and increases photosynthesis of different upland rice varieties[J]. International Journal of Environmental Research and Public Health,2020,17(10):3621.
[52]王凯,包立,栗丽,等. 土壤外源补硒对油菜硒吸收转运累积的影响[J]. 江苏农业科学,2021,49(13):79-84.
[53]Ding Y Z,Feng R W,Wang R G,et al. A dual effect of Se on Cd toxicity:evidence from plant growth,root morphology and responses of the antioxidative systems of paddy rice[J]. Plant and Soil,2014,375(1):289-301.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]荣德福,赵晔萍.微波消解-原子吸收光谱法测定进口粮食中的硒[J].江苏农业科学,2013,41(04):279.
[6]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(7):60.
[7]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(7):62.
[8]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(7):349.
[9]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(7):166.
[10]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(7):141.

备注/Memo

备注/Memo:
收稿日期:2022-06-13
基金项目:粮食作物种质创新与遗传改良湖北省重点实验室开放课题(编号:2020lzjj09)。
作者简介:向旭敏(1998—),女,湖北恩施人,硕士研究生,从事植物逆境生理生态学研究。E-mail:xiangxumin0927@163.com。
通信作者:李丽,博士,副教授,从事植物资源与富硒机制研究。E-mail:lily7819@whpu.edu.cn。
更新日期/Last Update: 2023-04-05