|本期目录/Table of Contents|

[1]侯赛赛,白懿杭,王灿,等.土壤有机碳及其活性组分研究进展[J].江苏农业科学,2023,51(13):24-33.
 Hou Saisai,et al.Research progress of soil organic carbon and its active components[J].Jiangsu Agricultural Sciences,2023,51(13):24-33.
点击复制

土壤有机碳及其活性组分研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第13期
页码:
24-33
栏目:
专论与综述
出版日期:
2023-07-05

文章信息/Info

Title:
Research progress of soil organic carbon and its active components
作者:
侯赛赛1白懿杭2王灿3祖超3张瑞芳245王鑫鑫245
1.河北农业大学资源与环境科学学院,河北保定 071001; 2.国家北方山区农业工程技术研究中心,河北保定 071001;3.中国热带农业科学院香料饮料研究所,海南万宁 571533; 4.河北省山区农业技术创新中心,河北保定 071001;5.河北农业大学河北省山区研究所,河北保定 071001
Author(s):
Hou Saisaiet al
关键词:
土壤质量土壤有机碳活性有机碳土壤团聚体
Keywords:
-
分类号:
S153.6
DOI:
-
文献标志码:
A
摘要:
土壤有机碳是反映土壤质量的关键性指标,对提高作物产量、调节土壤养分循环、改善土壤质量和全球碳循环具有重要意义。其中,土壤有机碳中的活性组分(颗粒有机碳、可溶性有机碳、微生物生物量碳和易氧化有机碳)较土壤总有机碳响应土壤理化性质、环境条件和管理方式改变更为敏感,因而是研究中的重点。土壤有机碳主要来源于地上凋落物、根系生物量、根系分泌物和微生物量。环境条件(温度和降水量变化)和管理方式(施肥措施、灌溉制度和土地利用方式等)变化影响了凋落物的输入类型和数量,同时也间接改变了土壤物理性质(包括土壤pH值、含水量、容重和团聚体数量等),影响了土壤微生物的丰度和活性,改变了土壤有机碳的固存和分解速率。
Abstract:
-

参考文献/References:

[1]Moebius-Clune B N,Moebius-Clune D J,Gugino B K,et al. Comprehensive assessment of soil health-The cornell framework manual[M]. Geneva:Cornell University,2016:19-75.
[2]van Groenigen K J,Qi X,Osenberg C W,et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage[J]. Science,2014,344(6183):508-509.
[3]程璐,程曼,徐茂红,等. 铁对不同坡向不同深度亚高山草甸土壤有机碳矿化特征的影响[J/OL]. 应用与环境生物学报. (2022-06-20)[2023-01-10]. https://kns.cnki.net/kcms/detail/51.1482.Q.20220617.1659.013.html.
[4]Lal R. Accelerated soil erosion as a source of atmospheric CO2[J]. Soil & Tillage Research,2018,188:35-40.
[5]Bossio D A,Cook-Patton S C,Ellis P W,et al. The role of soil carbon in natural climate solutions[J]. Nature Sustainability,2020,3(5):391-398.
[6]渠晨晨,任稳燕,李秀秀,等. 重新认识土壤有机质[J]. 科学通报,2022,67(10):913-923.
[7]张晓玲,陈效民,陶朋闯,等. 施用生物质炭对旱地红壤有机碳矿化及碳库的影响[J]. 水土保持学报,2017,31(2):191-196.
[8]原野,高国卿,高嫄,等. 黄土区大型露天煤矿复垦24a土壤碳氮组分特征[J]. 农业工程学报,2021,37(4):167-174.
[9]余健,房莉,卞正富,等. 土壤碳库构成研究进展[J]. 生态学报,2014,34(17):4829-4838.
[10]闫丽娟,李广,吴江琪,等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响[J]. 生态学报,2019,39(15):5546-5554.
[11]He X X,Huang Y Z,Zhang Q C,et al. Distribution of organic carbon fractions in soil aggregates in Chinese fir plantations with different stand ages[J]. Ecological Processes,2021,10(1):646-658.
[12]Geisen S,Hu S R,dela Cruz T E E,et al. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes[J]. The ISME Journal,2020,15(2):618-621.
[13]Li Y,Li Z,Cui S,et al. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands:a global perspective[J]. Soil & Tillage Research,2021,205:104758.
[14]Zornoza R,Acosta J A,Bastida F,et al. Identification of sensitive indicators to assess the interrelationship between soil quality,management practices and human health[J]. Soil,2015,1(1):173-185.
[15]Krogh L,Noergaard A,Hermansen M,et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods[J]. Agriculture Ecosystems & Environment,2003,96(1/2/3):19-28.
[16]Diffenbaugh N S,Field C B. Changes in ecologically critical terrestrial climate conditions[J]. Science,2013,341(6145):486-492.
[17]Ding J Z,Chen L Y,Ji C J,et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience,2017,10(6):420-424.
[18]Chen S P,Wang W T,Xu W T,et al. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4027-4032.
[19]Dean C,Kirkpatrick J B,Doyle R B,et al. The overlooked soil carbon under large,old trees[J]. Geoderma,2020,376:114541.
[20]Cotrufo M F,Ranalli M G,Haddix M L,et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience,2019,12(12):989-994.
[21]Hong S B,Yin G D,Piao S L,et al. Divergent responses of soil organic carbon to afforestation[J]. Nature Sustainability,2020,3(9):1-7.
[22]Zhenrui Z,Xiaoxia G,Sibo Z,et al. Urban development enhances soil organic carbon storage through increasing urban vegetation[J]. Journal of Environmental Management,2022,312:114922.
[23]Peixoto L,Elsgaard L,Rasmussen J,et al. Decreased rhizodeposition,but increased microbial carbon stabilization with soil depth down to 3.6 m[J]. Soil Biology & Biochemistry,2020,150:108008.
[24]Li Q Q,Li A W,Dai T F,et al. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s[J]. Global Change Biology,2020,26(7):4134-4146.
[25]Keiluweit M,Wanzek T,Kleber M,et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J]. Nature Communications,2017,8(1):1771.
[26]Angst G,Mueller K E,Kgel-Knabner I,et al. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter[J]. Biogeochemistry,2017,132(3):307-324.
[27]Hong H L,Chen S L,Fang Q,et al. Adsorption of organic matter on clay minerals in the Dajiuhu peat soil chronosequence,South China[J]. Applied Clay Science,2019,178:105125.
[28]Li N,Long J H,Han X Z,et al. Molecular characterization of soil organic carbon in water-stable aggregate fractions during the early pedogenesis from parent material of Mollisols[J]. Journal of Soils and Sediments,2020,20(4):1869-1880.
[29]Adnan M,Xu M G,Syed A A S,et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China[J]. Journal of Environmental Management,2020,270:110894.
[30]Gul S,Whalen J K,Ellis B E,et al. Plant residue chemistry impacts soil processes and microbial community structure:a study with Arabidopsis thaliana cell wall mutants[J]. Applied Soil Ecology,2012,60:84-91.
[31]Delgado-Baquerizo M,Eldridge D J,Maestre F T,et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems[J]. Science Advances,2017,3(4):1602008.
[32]Bangroo S A,Najar G R,Rasool A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range[J]. Catena,2017,158:63-68.
[33]Wu M H,Chen S Y,Chen J W,et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(25):e2025321118.
[34]Grace J B,Anderson T M,Seabloom E W,et al. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature,2016,529(7586):390-393.
[35]Ibisch P L,Hoffmann M T,Kreft S,et al. A global map of roadless areas and their conservation status[J]. Science,2016,354(6318):1423-1427.
[36]陈静文. 丹江口库区侧柏人工林凋落物输入调控对土壤不同组分有机碳氮的影响[D]. 武汉:中国科学院大学(中国科学院武汉植物园),2018:43-44.
[37]Mayer M,Prescott C E,Abaker W E A,et al. Tamm review:influence of forest management activities on soil organic carbon stocks:a knowledge synthesis[J]. Forest Ecology and Management,2020,466:118127.
[38]习丹,余泽平,熊勇,等. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J]. 应用生态学报,2020,31(10):3349-3356.
[39]郭洁芸,王雅歆,李建龙. 氮添加对中国陆地生态系统植物-土壤碳动态的影响[J]. 生态学报,2022,42(12):4823-4833.
[40]简俊楠,刘伟超,朱玉帆,等. 短期氮添加对黄土高原人工刺槐林土壤有机碳组分的影响[J]. 环境科学,2023,44(5):2767-2774.
[41]姚易寒,张少博,周家树,等. 氮磷添加对毛竹林土壤有机碳矿化及其激发效应的影响[J/OL]. 土壤学报. (2002-11-12)[2023-01-10]. http://kns.cnki.net/kcms/detail/32.1119.P.20220923.20220835.20220002.html.
[42]Ye C,Chen D,Hall S J,et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon:plant microbial and geochemical controls[J]. Ecology Letters,2018,21:1162-1173.
[43]Chen J G,Xiao W,Zheng C Y,et al. Nitrogen addition has contrasting effects on particulate and mineralassociated soil organic carbon in a subtropical forest[J]. Soil Biology & Biochemistry,2022,142:107708.
[44]Lu X K,Mao Q G,Wang Z H,et al. Long-term nitrogen addition decreases soil carbon mineralization in an n-rich primary tropical forest[J]. Forests,2021,12(6):734-734.
[45]Averill C,Turner B L,Finzi A C.Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature,2014,505(7484):543-545.
[46]Ashworth A J,Adams T,Kharel T,et al. Root decomposition in silvopastures is influenced by grazing,fertility,and grass species[J]. Agrosystems,Geosciences & Environment,2021,4(3):20190.
[47]Li T T,Zhang Y L,Bei S K,et al. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates[J]. Catena,2020,194:104739.
[48]Yu L,Zhuang T,Bai J H,et al. Effects of water and salinity on soil labile organic carbon in estuarine wetlands of the Yellow River Delta,China[J]. Ecohydrology & Hydrobiology,2020,20(4):556-569.
[49]Cai A D,Xu M G,Wang B,et al. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil & Tillage Research,2019,189:168-175.
[50]陈磊,郝小雨,马星竹,等. 黑土根际土壤有机碳及结构对长期施肥的响应[J]. 农业工程学报,2022,38(8):72-78.
[51]Sun Z C,Qin W L,Wang X,et al. Effects of manure on topsoil and subsoil organic carbon depend on irrigation regimes in a 9-year wheat-maize rotation[J]. Soil & Tillage Research,2021,205:104790.
[52]Sinclair T R. “Transpiration and crop yields” by C.T. de Wit,1958,Institute of biological and chemical research of field crops and herbage,No. 64.6,Wageningen,the Netherlands[J]. Crop Science,2020,60(1):29-31.
[53]Schmidt J E,Peterson C,Wang D,et al. Agroecosystem tradeoffs associated with conversion to subsurface drip irrigation in organic systems[J]. Agricultural Water Management,2018,202:1-8.
[54]Sokol N W,Kuebbing S E,Karlsen-Ayala E,et al. Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J]. New Phytologist,2019,221(1):233-246.
[55]Gross C D,Harrison R B. The case for digging deeper:Soil organic carbon storage,dynamics,and controls in our changing world[J]. Soil Systems,2019,3(2):28.
[56]Nielsen U N,Ball B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Global Change Biology,2015,21(4):1407-1421.
[57]Huang L,Shao Q Q,Liu J Y. Forest restoration to achieve both ecological and economic progress,Poyang Lake basin,China[J]. Ecological Engineering,2012,44:53-60.
[58]Dong L B,Fan J W,Li J W,et al. Forests have a higher soil C sequestration benefit due to lower C mineralization efficiency:evidence from the central loess plateau case[J]. Agriculture,Ecosystems and Environment,2022,339:108144.
[59]Augusto L,De Schrijver A,Vesterdal L,et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests[J]. Biological reviews of the Cambridge Philosophical Society,2015,90(2):444-466.
[60]Hoosbeek M R,Remme R P,Rusch G M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua[J]. Agroforestry Systems,2016,92(2):263-273.
[61]Gupta M M,Rao D H. On the principles of fuzzy neural networks[J]. Fuzzy Sets and Systems,1994,61(1):1-18.
[62]Gurmessa B,Ashworth A J,Yang Y C,et al. Soil bacterial diversity based on management and topography in a silvopastoral system[J]. Applied Soil Ecology,2021,163:103918.
[63]Niyigena V,Ashworth A J,Nieman C,et al. Factors affecting sugar accumulation and fluxes in warm-and cool-season forages grown in a silvopastoral system[J]. Agronomy,2021,11(2):354.
[64]孙悦,徐兴良,Kuzyakov Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报,2014,38(1):62-75.
[65]胡凯,陶建平,黄科,等. 模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响[J]. 应用与环境生物学报,2020,26(2):417-424.
[66]Keiluweit M,Bougoure J J,Nico P S,et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change,2015,5(6):588-595.
[67]马云华,王秀峰,魏珉,等. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J]. 应用生态学报,2005,16(11):145-149.
[68]Deng H,Li X F,Cheng W D,et al. Resistance and resilience of Cu-polluted soil after Cu perturbation,tested by a wide range of soil microbial parameters[J]. FEMS Microbiology Ecology,2009,70(2):137-148.
[69]Gai X P,Liu H B,Liu J,et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain[J]. Agricultural Water Management,2018,208:384-392.
[70]Lepsch H C,Brown P H,Peterson C A,et al. Impact of organic matter amendments on soil and tree water status in a California orchard[J]. Agricultural Water Management,2019,222:204-212.
[71]张翰林,郑宪清,何七勇,等. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J]. 水土保持学报,2016,30(4):216-220.
[72]陆畅,徐畅,黄容,等. 秸秆和生物炭对油菜—玉米轮作下紫色土有机碳及碳库管理指数的影响[J]. 草业科学,2018,35(3):482-490.
[73]Xue B,Huang L,Li X K,et al. Effect of clay mineralogy and soil organic carbon in aggregates under straw incorporation[J]. Agronomy,2022,12(2):534-534.
[74]Zhao J,Ni T,Li Y,et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS ONE,2018,9(1):85031.
[75]何甜甜,王静,符云鹏,等. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J]. 环境科学,2021,(1):450-452.
[76]于雅茜,裴久渤,刘维,等. 13C富集玉米根、茎、叶添加对长期不施肥和施肥处理棕壤土壤呼吸的影响及其激发效应[J/OL]. 土壤学报. [2022-12-11].https://kns.cnki.net/kcms/detail/32.1119.P.20220914.20221750.20220002.html.
[77]Wang B,Brewer P E,Shugart H H,et al. Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases-A concep[J]. Global Change Biology,2019,25(2):373-385.
[78]罗玉叶,邱龙霞,龙军,等. 不同秸秆还田率情境下亚热带水田土壤的“碳汇”贡献模拟研究[J/OL]. 土壤学报.[2022-12-11].https://kns.cnki.net/kcms/detail/32.1119.p.20220916.20221340.20220002.html.
[79]霍启煜,马丽娟,徐悦轩,等. 秸秆还田方式及施氮量对滴灌棉田土壤有机碳氮的影响[[J]. 水土保持学报,2022,36(3):207-212.
[80]王永栋,武均,蔡立群,等. 秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响[J]. 干旱地区农业研究,2022,40(2):232-239,249.
[81]宋依依,阳曹,段鑫盈,等. 秸秆还田深度对土壤团聚体组成及有机碳含量的影响[J]. 土壤,2022,54(2):344-350.
[82]Wang X X,Li J Q,Wang D L,et al. Straw incorporation effects on net photosynthetic carbon assimilation and maize growth[J/OL]. Frontiers in Agronomy.[2022-12-11]. http://www.researchsquare.com/article/rs-656233/Vl.
[83]柳开楼,胡惠文,余喜初,等. 香根草秸秆覆盖和化肥减施对红壤花生产量的影响[J]. 生态科学,2022,41(2):220-226.
[84]佟小刚,韩新辉,李娇,等. 黄土丘陵区不同退耕还林地土壤颗粒结合态碳库分异特征[J]. 农业工程学报,2016,32(21):170-176.
[85]Wang H Y,Wu J Q,Li G,et al. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau[J]. Ecology and evolution,2020,10(21):12211-12223.
[86]刘红梅,张海芳,赵建宁,等. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报,2020,29(8):18-26.
[87]王一诺,徐志伟,王升忠. 白江河天然和排水泥炭沼泽土壤活性有机碳组分含量及其影响因素研究[J]. 湿地科学,2021,19(6):691-701.
[88]董洪芳,于君宝,管博. 黄河三角洲碱蓬湿地土壤有机碳及其组分分布特征[J]. 环境科学,2013,34(1):288-292.
[89]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:106-109.
[90]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:25-38.
[91]Jenkinson D S,Powlson D S. The effects of biocidal treatments on metabolism in soil-V:a method for measuring soil biomass[J]. Soil Biology and Biochemistry,1976,8(3):209-213.
[92]Blair G,Lefroy R,Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Journal of Agricultural Research,1995,46(7):393-406.
[93]Golchin A,Oades J M,Skjemstad J O,et al. Soil structure and carbon cycling[J]. Soil Research,1994,32(5):1043-1068.
[94]苏梓锐,曾发旭,郑成洋. 氮添加对亚热带常绿阔叶林土壤有机碳及土壤呼吸的影响[J]. 北京大学学报(自然科学版),2022,58(3):517-525.
[95]唐光木,徐万里,盛建东,等. 新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化[J]. 土壤学报,2010,47(2):279-285.
[96]Gregorich E G,Monreal C M,Schnitzer M,et al. Transformation of plant residues into soil organic matter:chemical characterization of plant tissue,isolated soil fractions,and whole soils[J]. Soil Science,1996,161(10):680-693.
[97]高继伟,谢英荷,李廷亮,等. 不同培肥措施对矿区复垦土壤活性有机碳的影响[J]. 灌溉排水学报,2018,37(5):6-12.
[98]郭亚军,邱慧珍,张玉娇,等. 不同施肥方式对马铃薯农田土壤有机碳组分和碳库管理指数的影响[J]. 土壤通报,2021,52(4):912-919.
[99]陈晓东,吴景贵. 不同有机物料施用下土壤颗粒有机碳红外光谱特征[J]. 分析化学,2021,49(3):468-473.
[100]李欢,王艳玲,殷丹,等. 水稻秸秆/根系添加对稻田红壤发生层颗粒态及矿物结合态有机碳的影响[J]. 土壤通报,2022,53(2):384-391.
[101]汉光昭,曹广超,曹生奎,等. 高寒地区生态修复草地和林地土壤颗粒有机碳分解特征[J]. 中国沙漠,2022,42(5):36-43.
[102]Xiao W,Feng S Z,Liu Z F,et al. Interactions of soil particulate organic matter chemistry and microbial community composition mediating carbon mineralization in karst soils[J]. Soil Biology & Biochemistry,2017,107:85-93.
[103]赵搏,丁雪丽,汪景宽,等. 地膜覆盖和施肥对棕壤剖面溶解性有机碳分布的影响[J]. 土壤通报,2019,50(4):847-853.
[104]Ritson J P,Graham N J D,Templeton M R,et al. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies:a UK perspective[J]. Science of the Total Environment,2014,473:714-730.
[105]Kalbitz K,Solinger S,Park J H,et al. Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Science,2000,165(4):277-304.
[106]Li X M,Chen Q L,He C,et al. Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities[J]. Environmental Science and Technology,2019,53:50-59.
[107]Guo Z Y,Wang Y H,Wan Z M,et al. Soil dissolved organic carbon in terrestrial ecosystems:global budget,spatial distribution and controls[J]. Global Ecology and Biogeography,2020,29(12):2159-2175.
[108]曹建华,潘根兴,袁道先. 不同植物凋落物对土壤有机碳淋失的影响及岩溶效应[J]. 第四纪研究,2000,20(4):359-366.
[109]柳敏,宇万太,姜子绍,等. 土壤溶解性有机碳(DOC)的影响因子及生态效应[J]. 土壤通报,2007,38(4):758-764.
[110]刘江伟,徐海东,林同岳,等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究,2022,35(3):18-26.
[111]彭艳,刘佳佳,王林均,等. 植被类型和管理方式对4种经济林土壤活性碳氮及碳通量的影响[J]. 浙江林业科技,2019,39(6):12-18.
[112]Wu H H,Xu X K,Cheng W G,et al. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period[J]. Soil Science and Plant Nutrition,2020,66(1):163-176.
[113]Lau D C P,Jonsson A,Isles P D F,et al. Lowered nutritional quality of plankton caused by global environmental changes[J]. Global Change Biology,2021,27(23):6294-6306.
[114]Aitkenhead J A,McDowell W H. Soil C ∶N ratio as a predictor of annual riverine DOC flux at local and global scales[J]. Global Biogeochemical Cycles,2000,14(1):127-138.
[115]郑永红,张治国,胡友彪,等. 淮南矿区煤矸石风化物特性及有机碳分布特征[J]. 水土保持通报,2014,34(5):18-24.
[116]白潇,张世熔,钟钦梅,等. 中国东部区域土壤活性有机碳分布特征及其影响因素[J]. 生态环境学报,2018,27(9):1625-1631.
[117]倪进治,徐建民,谢正苗. 有机肥料施用后潮土中活性有机质组分的动态变化[J]. 农业环境科学学报,2003,22(4):416-419.
[118]Sun Y Q,Xiong X N,He M J,et al. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation:a critical review[J]. Chemical Engineering Journal,2021,424:130387.
[119]Chang Chien S W,Wang H H,Chen Y M,et al. Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions[J]. Journal of Hazardous Materials,2021,403:123549-123549.
[120]孙涛,孙约兵,贾宏涛,等. 虾壳生物炭对Cd-As复合污染土壤修复效应及土壤可溶性有机碳含量的影响[J]. 农业环境科学学报,2021,40(8):1675-1685,1606.
[121]Cook B D,Allan D L. Dissolved organic carbon in old field soils:compositional changes during the biodegradation of soil organic matter[J]. Soil Biology and Biochemistry,1992,24(6):595-600.
[122]Li M,Drosos M,Hu H L,et al. Organic amendments affect dissolved organic matter composition and mercury dissolution in pore waters of mercury-polluted paddy soil[J]. Chemosphere,2019,232:356-365.
[123]Song C F,Shan S D,Yang C,et al. The comparison of dissolved organic matter in hydrochars and biochars from pig manure[J]. Science of the Total Environment,2020,720:137423.
[124]Yan Z X,Zhang W Y,Wang Q S,et al. Changes in soil organic carbon stocks from reducing irrigation can be offset by applying organic fertilizer in the North China Plain[J]. Agricultural Water Management,2022,266:107539.
[125]王艮梅,周立祥,占新华,等. 水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验[J]. 环境科学学报,2004,24(5):858-864.
[126]梁远宇,王小利,徐明岗,等. 长期不同施肥土壤对可溶性有机碳的吸附特征[J]. 植物营养与肥料学报,2021,29(11):1915-1925.
[127]Chen X D,Wu J G,Opoku K Y. Rationalizing the use of agricultural organic waste:Effects on soil dissolved organic carbon in primary saline-alkali soil[J]. Communications in Soil Science and Plant Analysis,2021,52(2):102-115.
[128]Gmach M R,Scarpare F V,Cherubin M R,et al. Sugarcane straw removal effects on soil water storage and drainage in Southeastern Brazil[J]. Journal of Soil and Water Conservation,2019,74:466-476.
[129]魏早强,罗珠珠,牛伊宁,等. 土壤有机碳组分对土地利用方式响应的 Meta 分析[J]. 草业科学,2022,39(6):1115-1128.
[130]姜文婷,高翔菲,宋锦浩,等. 不同土地利用方式土壤有机碳组分及微生物群落对植物残体输入的响应[J/OL]. 土壤通报. [2023-01-10]. https://kns.cnki.net/kcms/detail/21.1172.S.20220927.2231.001.html.
[131]Larsen K S,Jonasson S,Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology,2002,21(3):187-195.
[132]王清奎,汪思龙,冯宗炜,等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报,2005,25(3):513-519.
[133]李亚林,张旭博,任凤玲,等. 长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合分析[J]. 中国农业科学,2020,53(6):1224-1233.
[134]朱宣霖,朱长伟,陈琛,等. 轮耕对豫北潮土速效养分及可溶性有机碳结构特性的影响[J]. 中国生态农业学报 (中英文),2022,30(4):683-693.
[135]杜映妮,李天阳,何丙辉. 不同施肥和耕作处理紫色土坡耕地碳、氮、磷流失特征[J]. 植物营养与肥料学报,2021,27(12):2149-2159.
[136]曹小闯,刘晓霞,马超,等. 干湿交替灌溉改善稻田根际氧环境进而促进氮素转化和水稻氮素吸收[J]. 植物营养与肥料学报,2022,28(1):1-14.
[137]Ullah R,Lone M I,Khan M B,et al. Effect of cropping systems and seasonal variations on soil microbial biomass and enzymatic activities in arid soils[J]. Report and Opinion,2014,6(12):1741-1761.
[138]Luo G W,Xue C,Jiang Q H,et al. Soil carbon,nitrogen,and phosphorus cycling microbial populations and their resistance to global change depend on soil C ∶[KG-*3]N ∶[KG-*3]P stoichiometry[J]. mSystems,2020,5(3):00162.
[139]Taylor L A,Arthur M A,Yanai R D. Forest floor microbial biomass across a northern hardwood successional sequence[J]. Soil Biology and Biochemistry,1999,31(3):431-439.
[140]李品,木勒德尔·吐尔汗拜,田地,等. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报,2019,43(6):532-542.
[141]He L Y,Mazza Rodrigues J L,Soudzilovskaia N A,et al. Global biogeography of fungal and bacterial biomass carbon in topsoil[J]. Soil Biology and Biochemistry,2020,151:108024.
[142]何越,李春涛,俞元春,等. 亚热带森林土壤微生物生物量及群落功能特征的城乡梯度变化[J]. 应用生态学报,2021,32(1):93-102.
[143]王晓荣,雷蕾,曾立雄,等. 抚育间伐对马尾松林土壤活性有机碳的短期影响[J]. 生态学杂志,2021,40(4):1049-1061.
[144]张蛟,崔士友,陈澎军,等. 沿海滩涂水稻种植对土壤微生物量碳和水溶性有机碳的影响[J]. 江苏农业科学,2022,50(17):222-228.
[145]Miltner A,Bombach P,Schmidt-Brücken B,et al. SOM genesis:microbial biomass as a significant source[J]. Biogeochemistry,2012,111(1/2/3):41-55.
[146]宋佳珅,张晓丽,孔凡磊,等. 生物质调理剂对川西北高寒草地沙化土壤养分和微生物群落特征的影响[J]. 应用生态学报,2021,32(6):2217-2226.
[147]王翠丽,王军强,陈亮,等. 不同耕作方式对绿洲区农田土壤团聚体中微生物生物量碳、氮含量的影响[J]. 江苏农业科学,2022,50(12):246-251.
[148]Hagedorn F,Bruderhofer N,Ferrari A,et al. Tracking litter-derived dissolved organic matter along a soil chronosequence using C-14 imaging:Biodegradation,physico-chemical retention or preferential flow?[J]. Soil Biology & Biochemistry,2015,88:333-343.
[149]张雅柔,安慧,刘秉儒,等. 短期氮磷添加对荒漠草原土壤活性有机碳的影响[J]. 草业学报,2019,28(10):12-24.
[150]阎欣,刘任涛,安慧. 土壤易氧化有机碳与溶解性有机碳对荒漠草地沙漠化过程中土壤碳库变异的表征[J]. 草业学报,2018,27(11):15-25.
[151]李少辉,王邵军,张哲,等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响[J]. 应用生态学报,2019,30(2):413-419.
[152]张哲,王邵军,李霁航,等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报,2019,39(17):6257-6263.

相似文献/References:

[1]滕维超,刘少轩,刘新亮,等.不同种植模式对油茶成林土壤有机碳及养分特征的影响[J].江苏农业科学,2013,41(05):323.
 Teng Weichao,et al.Influence of different planting modes on organic carbon and nutrient characteristics in soils of Camellia oleifera forest[J].Jiangsu Agricultural Sciences,2013,41(13):323.
[2]杨皓,李婕羚,范明毅,等.喀斯特山区无籽刺梨种植基地土壤质量特性[J].江苏农业科学,2016,44(03):385.
 Yang Hao,et al.Soil properties of planting bases of Rosa sterilis S. D. Shi located in karst mountainous region[J].Jiangsu Agricultural Sciences,2016,44(13):385.
[3]杨悦舒,夏振尧,吴彬,等.基于层次分析法的生态防护基材土壤质量评价[J].江苏农业科学,2014,42(03):288.
 Yang Yueshu,et al.Assessment of soil quality of ecological slope-protected base material based on analytic hierarchy process[J].Jiangsu Agricultural Sciences,2014,42(13):288.
[4]高杨,胡振琪,肖武,等.造林对土壤有机碳储量的影响(综述)[J].江苏农业科学,2014,42(05):301.
 Gao Yang,et al.Effect of afforestation on soil organic carbon reserve:a review[J].Jiangsu Agricultural Sciences,2014,42(13):301.
[5]胡庆贺,徐海峰,张习敏,等.不同管理方式对贵州典型暖性草地土壤有机碳的影响[J].江苏农业科学,2015,43(03):330.
 Hu Qinghe,et al.Effect of different managements on spatial and temporal variations of soil organic carbon in warm temperate grassland of Guizhou Province[J].Jiangsu Agricultural Sciences,2015,43(13):330.
[6]刘学东,陈林,李学斌,等.草地生态系统土壤有机碳储量的估算方法综述[J].江苏农业科学,2016,44(08):10.
 Liu Xuedong,et al.Estimation method of soil organic carbon reserves in grassland ecosystem: a review[J].Jiangsu Agricultural Sciences,2016,44(13):10.
[7]周育智,陈孝杨,王芳,等.安徽省淮南市采煤沉陷生态修复区表层土壤有机碳分布[J].江苏农业科学,2016,44(09):439.
 Zhou Yuzhi,et al.Distribution of organic carbon in topsoil of ecological remediation areas of coal mining subsidence in Huainan,Anhui Province[J].Jiangsu Agricultural Sciences,2016,44(13):439.
[8]杨士红,刘晓静,罗童元,等.生物炭施用对节水灌溉稻田温室气体排放影响研究进展[J].江苏农业科学,2016,44(10):5.
 Yang Shihong,et al.Effect of biochar application on greenhouse gases emission in paddy fields under water-saving irrigation:a review[J].Jiangsu Agricultural Sciences,2016,44(13):5.
[9]孙霞,杜俊龙,黄长福,等.典型干旱荒漠绿洲区不同年限枣园土壤碳库特征[J].江苏农业科学,2016,44(10):484.
 Sun Xia,et al.Soil organic carbon characteristics of jujube orchards with different years in typical arid desert oasis region[J].Jiangsu Agricultural Sciences,2016,44(13):484.
[10]孟文武,郑利亚,崔诚,等.武功山退化草甸养分分布格局及相关性[J].江苏农业科学,2017,45(03):237.
 Meng Wenwu,et al.Nutrient distribution pattern and its correlation of degraded meadow of Wugong Mountain[J].Jiangsu Agricultural Sciences,2017,45(13):237.

备注/Memo

备注/Memo:
收稿日期:2023-02-22
基金项目:[JP4]国家重点研发计划(编号:2021YFD1901001、2022YFD1901303);海南省院士创新平台科研专项(编号:YSPTZX202115)资助。
作者简介:侯赛赛(1998—),女,河北邢台人,硕士研究生,主要从事资源利用与植物保护研究。E-mail:hss11022021@163.com。
通信作者:王鑫鑫,博士,副教授,硕士生导师,主要从事资源利用与植物保护研究。E-mail:sywxx@hebau.edu.cn。
更新日期/Last Update: 2023-07-05