|本期目录/Table of Contents|

[1]曾凡松,翟亚美,袁斌,等.小麦白粉菌BgtVosA、BgtVelB、BgtBrlA基因的克隆及在调控无性繁殖中的作用[J].江苏农业科学,2023,51(16):26-34.
 Zeng Fansong,et al.Cloning of BgtVosA,BgtVelB and BgtBrlA genes of Blumeria graminis f. sp. tritici and their roles in regulating asexual reproduction[J].Jiangsu Agricultural Sciences,2023,51(16):26-34.
点击复制

小麦白粉菌BgtVosA、BgtVelB、BgtBrlA基因的克隆及在调控无性繁殖中的作用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第16期
页码:
26-34
栏目:
生物技术
出版日期:
2023-08-20

文章信息/Info

Title:
Cloning of BgtVosA,BgtVelB and BgtBrlA genes of Blumeria graminis f. sp. tritici and their roles in regulating asexual reproduction
作者:
曾凡松1 翟亚美1 袁斌1 龚双军1 向礼波1 薛敏峰1 阙亚伟1 史文琦1 郑磊2 张强2 杨立军1 喻大昭1
1.农业农村部华中作物有害生物综合治理重点实验室/农作物重大病虫草害防控湖北省重点实验室/湖北省农业科学院植保土肥研究所,湖北武汉 430064; 2.山东金正大生态工程集团股份有限公司,山东临沂 276700
Author(s):
Zeng Fansonget al
关键词:
小麦白粉菌Velvet蛋白BrlA基因无性产孢表达分析
Keywords:
-
分类号:
S435.121.4+6
DOI:
-
文献标志码:
A
摘要:
为了明晰小麦白粉菌BgtVosA、BgtVelB、BgtBrlA基因的序列特点及它们在白粉菌产孢过程中的表达动态,为解析velvet蛋白在调控白粉菌无性繁殖中的作用提供理论依据,采用基于RNA-seq数据的克隆测序技术获得BgtVosA、BgtVelB、BgtBrlA基因的CDS序列,用生物信息学方法分析它们编码的蛋白质序列特征和空间结构,用RT-qPCR监测它们在白粉菌分生孢子形成时期的表达模式。结果表明,BgtVosA、BgtVelB、BgtBrlA基因的ORF长度依次为1470、1341、1143 bp,分别编码489、446、380个氨基酸,分子量在54.0~48.0 ku,属于碱性、亲水性、热不稳定蛋白质,均含有核定位信号,不含跨膜螺旋和信号肽,空间结构呈现出近球形。BgtVosA、BgtVelB、BgtBrlA分别与其他真菌来源的VosA、VelB、BrlA蛋白具有同源性,且与白粉菌同源蛋白具有更近的亲缘关系,氨基酸序列在白粉菌自然群体中均高度保守。BgtVosA、BgtVelB属于典型的velvet蛋白家族成员,可能通过分子互作形成复合物,但其结构与构巢曲霉同源蛋白复合物存在明显差异。在小麦白粉菌无性繁殖阶段,BgtVosA、BgtVelB基因均显著上调(P<0.01),BgtBrlA表达水平没有显著变化(P>0.05)。 DNA结合区域分析推测BgtVosA-BgtVelB复合物不能靶向BgtBrlA启动子,调控其BgtBrlA的表达。BgtVosA、BgtVelB基因在调控白粉菌无性生殖中起重要作用。
Abstract:
-

参考文献/References:

[1]曹世勤,黄瑾,孙振宇,等. 2007—2015年小麦品种(系)抗白粉病性鉴定及评价[J]. 江苏农业科学,2018,46(8):89-92.
[2]Glawe D A.The powdery mildews:a review of the worlds most familiar (yet poorly known) plant pathogens[J]. Annual Review of Phytopathology,2008,46:27-51.
[3]Yang X J,Yang L J,Yu D Z,et al. Effects of physcion,a natural anthraquinone derivative,on the infection process of Blumeria graminis on wheat[J]. Canadian Journal of Plant Pathology,2008,30(3):391-396.
[4]Park H S,Yu J H. Developmental regulators in Aspergillus fumigatus[J]. Journal of Microbiology,2016,54(3):223-231.
[5]Eom T J,Moon H,Yu J H,et al. Characterization of the velvet regulators in Aspergillus flavus[J]. Journal of Microbiology,2018,56(12):893-901.
[6]Kim M J,Lee M K,Pham H Q,et al. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans[J]. Genes,2020,11(1):103.
[7]Park H S,Yu J H. Genetic control of asexual sporulation in filamentous fungi[J]. Current Opinion in Microbiology,2012,15(6):669-677.
[8]Ahmed Y L,Gerke J,Park H S,et al. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB[J]. PLoS Biology,2014,12(4):e1001849.
[9]Park H S,Yu Y M,Lee M K,et al. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores[J]. Scientific Reports,2015,5:10199.
[10]Wu M Y,Mead M E,Lee M K,et al. Transcriptomic,protein-DNA interaction,and metabolomic studies of VosA,VelB,and WetA in Aspergillus nidulans asexual spores[J]. mBio,2021,12(1):e03128-20.
[11]Müller M C,Praz C R,Sotiropoulos A G,et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew[J]. New Phytologist,2019,221(4):2176-2189.
[12]Zeng F S,Yang L J,Gong S J,et al. Virulence and diversity of Blumeria graminis f. sp. tritici populations in China[J]. Journal of Integrative Agriculture,2014,13(11):2424-2437.
[13]Zeng F S,Menardo F,Xue M F,et al. Transcriptome analyses shed new insights into primary metabolism and regulation of Blumeria graminis f. sp. tritici during conidiation[J]. Frontiers in Plant Science,2017,8:1146.
[14]Hacquard S,Kracher B,Maekawa T,et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(24):2219-2228.
[15]Ristaino J B,Madritch M,Trout C L,et al. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora[J]. Applied and Environmental Microbiology,1998,64(3):948-954.
[16]Wilkins M R,Gasteiger E,Bairoch A,et al. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology,1999,112(1):531-552.
[17]Petersen T N,Brunak S,von Heijne G,et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011,8(10):785-786.
[18]Nguyen Ba A N,Pogoutse A,Provart N,et al. NLStradamus:a simple Hidden Markov Model for nuclear localization signal prediction[J]. BMC Bioinformatics,2009,10:202.
[19]Krogh A,Larsson B,von Heijne G,et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. Journal of Molecular Biology,2001,305(3):567-580.
[20]Yang J Y,Wang Y,Zhang Y. ResQ:an approach to unified estimation of B-factor and residue-specific error in protein structure prediction[J]. Journal of Molecular Biology,2016,428(4):693-701.
[21]Pierce B G,Wiehe K,Hwang H,et al. ZDOCK server:interactive docking prediction of protein-protein complexes and symmetric multimers[J]. Bioinformatics,2014,30(12):1771-1773.
[22]Hall B G. Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution,2013,30(5):1229-1235.
[23]Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[24]杨峥,申珅,李贞杨,等. 玉米大斑病菌Velvet基因家族生物信息学分析[J]. 河北农业大学学报,2016,39(5):18-25.
[25]Wu Y X,Xu L S,Yin Z Y,et al. Two members of the velvet family,VmVeA and VmVelB,affect conidiation,virulence and pectinase expression in Valsa mali[J]. Molecular Plant Pathology,2018,19(7):1639-1651.
[26]Yu M N,Yu J J,Cao H J,et al. The velvet protein UvVEA regulates conidiation and chlamydospore formation in Ustilaginoidea virens[J]. Journal of Fungi,2022,8(5):479-495.
[27]Bayram O,Braus G H.Coordination of secondary metabolism and development in fungi:the velvet family of regulatory proteins[J]. FEMS Microbiology Reviews,2012,36(1):1-24.
[28]Lee M K,Son Y E,Park H S,et al. Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans[J]. Scientific Reports,2020,10:15075.
[29]Son Y E,Park H S.Unveiling the functions of the VosA-VelB target gene vidD in Aspergillus nidulans[J]. Mycobiology,2021,49(3):258-266.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-11-23
基金项目:国家小麦产业技术体系建设专项(编号:CARS-3-1-2)。
作者简介:曾凡松(1980—),男,湖北宜昌人,博士,副研究员,主要从事小麦病害防控研究。E-mail:zengfansong2005@126.com。
通信作者:杨立军,博士,研究员,主要从事小麦病害防控研究。E-mail:Yanglijun1993@163.com。
更新日期/Last Update: 2023-08-20