|本期目录/Table of Contents|

[1]王子洋,熊雨洁,冯发运,等.寡雄腐霉对禾谷镰刀菌防效及其产孢诱导剂筛选[J].江苏农业科学,2023,51(18):101-107.
 Wang Ziyang,et al.Control effect of Pythium oligandrum against Fusarium graminearum and screening of its pathogen inducers[J].Jiangsu Agricultural Sciences,2023,51(18):101-107.
点击复制

寡雄腐霉对禾谷镰刀菌防效及其产孢诱导剂筛选(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第18期
页码:
101-107
栏目:
植物保护
出版日期:
2023-09-20

文章信息/Info

Title:
Control effect of Pythium oligandrum against Fusarium graminearum and screening of its pathogen inducers
作者:
王子洋12熊雨洁2冯发运2余向阳2朱耀华3张雷刚12
1.江苏大学食品与生物工程学院,江苏镇江 212013; 2.江苏省农业科学院农业资源与环境研究所,江苏南京 210014;3.河南省漯河市源汇区农业技术推广站,河南漯河 462000
Author(s):
Wang Ziyanget al
关键词:
寡雄腐霉禾谷镰刀菌生防菌病害防控诱导产孢
Keywords:
-
分类号:
S435.121.4+5
DOI:
-
文献标志码:
A
摘要:
寡雄腐霉(Pythium oligandrum)是一种对作物具有防病促生效果的生防真菌。为进一步从病害防控及产孢诱导2个方面拓展其应用潜力,以小麦致病菌禾谷镰刀菌(Fusarium graminearum)PH1为研究对象,通过平板对峙和活体抑菌试验研究寡雄腐霉PO-1的抑菌防病效果,并设计正交试验筛选产孢诱导剂配方,以提高寡雄腐霉卵孢子产量。结果表明,离体条件下PO-1可抑制PH1菌丝生长并降低其生活力,延缓病原菌孢子萌发和芽管伸长;在接种病原菌孢子液的小麦苗上喷洒PO-1卵孢子悬浮液能显著降低发病率和病斑长度;为进一步提高寡雄腐霉的产孢效率,以卵孢子产量为指标,通过正交试验筛选出了PO-1产孢诱导剂组合物,即在V8培养基中加入30 mg/L钼酸钠、150 mg/L硫酸铵及1 000 mg/L EDTA铁钠,20 ℃培养5 d后产孢量达7.04×105个/mL,是普通培养条件下产孢量的3倍以上,上述结果可为寡雄腐霉生防菌剂研发提供理论依据和关键技术支撑。
Abstract:
-

参考文献/References:

[1]Wang L Y,Xie Y S,Cui Y Y,et al. Conjunctively screening of biocontrol agents (BCAs) against Fusarium root rot and Fusarium head blight caused by Fusarium graminearum[J]. Microbiological Research,2015,177:34-42.
[2]Xiu Q,Bi L Y,Xu H R,et al. Antifungal activity of quinofumelin against Fusarium graminearum and its inhibitory effect on DON biosynthesis[J]. Toxins,2021,13(5):348.
[3]胡娴,何珊,史红安,等. 木霉菌应用研究进展[J]. 湖北工程学院学报,2019,39(6):50-55.
[4]Benhamou N,le Floch G,Vallance J,et al. Pythium oligandrum:an example of opportunistic success[J]. Microbiology,2012,158(Pt 11):2679-2694.
[5]惠娜娜,王立,郑果,等. 8种杀菌剂对马铃薯炭疽病病菌室内毒力测定[J]. 甘肃农业科技,2021,52(4):22-24.
[6]Ouhaibi-Ben Abdeljalil N,Vallance J,Gerbore J,et al. Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot[J]. Biological Control,2021,155:104521.
[7]Pánek M,Hanácˇek A,Wenzlová J,et al. A comparison of the ability of some commercially produced biological control agents to protect strawberry plants against the plant pathogen Phytophthora cactorum[J]. Agriculture,2021,11(11):1086.
[8]Yang K,Dong X H,Li J L,et al. Type 2 Nep1-like proteins from the biocontrol oomycete Pythium oligandrum suppress Phytophthora capsici infection in solanaceous plants[J]. Journal of Fungi,2021,7(7):496.
[9]毕秋艳,韩秀英,马志强,等. 寡雄腐霉与烯酰吗啉互作防治葡萄霜霉病和替代部分化学药剂减量用药应用[J]. 植物病理学报,2018,48(5):675-681.
[10]李鑫杰,汪丽军,黄利春,等. 寡雄腐霉对水稻立枯病的防效初探[J]. 中国植保导刊,2015,35(8):56-58.
[11]姜一鸣,黄海鹰,陈勇. 寡雄腐霉生防机理及应用研究进展[J]. 中国生物防治学报,2017,33(3):401-407.
[12]Benhamou N,Rey P,Picard K,et al. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens[J]. Phytopathology,1999,89(6):506-517.
[13]陈晨,旷文丰,陈娟,等. 钙离子和蓝光对深绿木霉Tr775在液体发酵过程中分生孢子产量的影响[J]. 化学与生物工程,2018,35(1):36-40.
[14]梁玎玎,张艳丽,谷祖敏. 草茎点霉SYAU-06菌株诱导产孢方法研究[J]. 农药,2020,59(3):219-222.
[15]旷文丰,糜芳,陈晨,等. 光诱导作用对木霉菌产孢量的影响研究[J]. 化学与生物工程,2020,37(6):51-57.
[16]Zhang C Y,Wang W W,Hu Y H,et al. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum[J]. BMC Microbiology,2022,22(1):67.
[17]Yassin M T,Mostafa A A F,Al-Askar A A. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat[J]. Journal of Taibah University for Science,2022,16(1):57-65.
[18]Ferraz P,Brando R L,Cássio F,et al. Moniliophthora perniciosa,the causal agent of cacao Witches broom disease is killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus yeasts[J]. Frontiers in Microbiology,2021,12:706675.
[19]Horner N R,Grenville-Briggs L J,van West P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation[J]. Fungal Biology,2012,116(1):24-41.
[20]Ribeiro W R C,Butler E E. Comparison of the mycoparasites Pythium periplocum,P.acanthicum and P.oligandrum[J]. Mycological Research,1995,99(8):963-968.
[21]Zhu Y L,Zhang M Q,Wang L S,et al. Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum[J]. Fungal Genetics and Biology,2022,158:103650.
[22]Chen Y,Wang J,Yang N,et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J]. Nature Communications,2018,9:3429.
[23]Xu S J,Wang Y X,Hu J Q,et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01,a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone[J]. Food Control,2021,130:108259.
[24]Diabankana R G C,Afordoanyi D M,Safin R I,et al. Antifungal properties,abiotic stress resistance,and biocontrol ability of Bacillus mojavensis PS17[J]. Current Microbiology,2021,78(8):3124-3132.
[25]Borkovich K A,Ebbole D J. Cellular and molecular biology of filamentous fungi[M]. Washington D C:ASM Press,2010.
[26]Ngolong Ngea G L,Qian X,Yang Q Y,et al. Securing fruit production:opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(3):2508-2533.
[27]张莹莹,郝文娟,李宏玉,等. 一株多黏类芽孢杆菌Paenibacillus polymyxa菌株P1防治广东菜心根肿病的研究[J]. 植物保护,2022,48(1):291-296,304.
[28]Liu Q L,Zhang R,Xue H L,et al. Ozone controls potato dry rot development and diacetoxyscirpenol accumulation by targeting the cell membrane and affecting the growth of Fusarium sulphureus[J]. Physiological and Molecular Plant Pathology,2022,118:101785.

相似文献/References:

[1]孙晓梅,黄金光.禾谷镰刀菌甾醇14α脱甲基酶基因cDNA克隆及生物信息学分析[J].江苏农业科学,2016,44(03):31.
 Sun Xiaomei,et al.cDNA cloning and bioinformatics analysis of sterol 14α-demethylase gene in Fusarium graminearum[J].Jiangsu Agricultural Sciences,2016,44(18):31.
[2]张鹏,邓渊钰,杨学明,等.小麦茎基腐病菌鉴定及不同药剂防治效果分析[J].江苏农业科学,2016,44(11):142.
 Zhang Peng,et al.Identification of wheat stem rot pathogen and analysis of control effects of different pesticides[J].Jiangsu Agricultural Sciences,2016,44(18):142.
[3]侯瑞,金巧军.禾谷镰刀菌真菌毒素DON生物合成途径及调控机制研究进展[J].江苏农业科学,2018,46(17):9.
 Hou Rui,et al.Research progress of biosynthesis approach and regulatory mechanisms of Fusarium graminearum mycotoxin DON[J].Jiangsu Agricultural Sciences,2018,46(18):9.
[4]张悦,施维,李丹,等.禾谷镰刀菌全基因组候选效应因子预测与分析[J].江苏农业科学,2019,47(06):81.
 Zhang Yue,et al.Analysis of candidate effectors from genome of Fusarium graminearum[J].Jiangsu Agricultural Sciences,2019,47(18):81.
[5]曹坤,管明,陈康,等.一株拮抗禾谷镰刀菌和降解呕吐毒素解淀粉芽孢杆菌的筛选及在饲料贮存中的应用[J].江苏农业科学,2019,47(08):179.
 Cao Kun,et al.Screening of probiotic Bacillus amyloliquefaciens CPLK1314 with function of antagonizing Fusarium graminearum and degrading vomiting toxin and its application in forage storing[J].Jiangsu Agricultural Sciences,2019,47(18):179.
[6]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌ZQT-31的分离与鉴定[J].江苏农业科学,2021,49(9):80.
 Zhang Qiang,et al.Isolation and identification of antagonistic bacteria ZQT-31 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(18):80.
[7]张艳茹,霍云凤,石红利,等.禾谷镰刀菌拮抗菌ZQT-9的鉴定与抑菌活性[J].江苏农业科学,2021,49(18):111.
 Zhang Yanru,et al.Identification and antifungal activity of antagonistic bacteria ZQT-9 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(18):111.
[8]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌21-1的发酵条件及稳定性分析[J].江苏农业科学,2023,51(20):122.
 Zhang Qiang,et al.Fermentation conditions and stability of antagonistic actinomycete 21-1 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2023,51(18):122.
[9]周萍,张弛,荀以仁,等.青稞内生细菌RKZ-05对禾谷镰刀菌的拮抗作用及其分子鉴定[J].江苏农业科学,2023,51(22):113.
 Zhou Ping,et al.Antagonism of endophytic bacteria RKZ-05 from highland barley against Fusarium graminearum and its molecular identification[J].Jiangsu Agricultural Sciences,2023,51(18):113.

备注/Memo

备注/Memo:
收稿日期:2022-06-01
基金项目:江苏省农业科技自主创新资金[编号:CX(21)3053]。
作者简介:王子洋(1996—),女,江苏徐州人,硕士研究生,主要从事食品与生物技术研究。E-mail:leigang.zh@163.com。
通信作者:朱耀华,高级农艺师,主要从事农学研究与技术推广,E-mail:5965258@163.com;张雷刚,博士,副研究员,主要从事微生物菌剂研发,E-mail:leigang.zh@163.com。
更新日期/Last Update: 2023-09-20