|本期目录/Table of Contents|

[1]李恒,张祥琴,田厚军,等.黄胸蓟马化学感受蛋白基因ThawCSP1克隆与表达分析[J].江苏农业科学,2023,51(19):37-43.
 Li Heng,et al.Molecular cloning and expression analysis of chemosensory protein gene ThawCSP1 from Thrips hawaiiensis[J].Jiangsu Agricultural Sciences,2023,51(19):37-43.
点击复制

黄胸蓟马化学感受蛋白基因ThawCSP1克隆与表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第19期
页码:
37-43
栏目:
生物技术
出版日期:
2023-10-05

文章信息/Info

Title:
Molecular cloning and expression analysis of chemosensory protein gene ThawCSP1 from Thrips hawaiiensis
作者:
李恒1张祥琴12田厚军1陈艺欣1林硕1魏辉12陈勇12
1.福建省农业科学院植物保护研究所/福建省作物有害生物监测与治理重点实验室/农业农村部福州作物有害生物科学观测实验站,福建福州 350013; 2.福建农林大学闽台作物有害生物生态防控国家重点实验室,福建福州 350002
Author(s):
Li Henget al
关键词:
黄胸蓟马化学感受蛋白表达谱免疫荧光免疫电镜
Keywords:
-
分类号:
S433.89
DOI:
-
文献标志码:
A
摘要:
化学感受蛋白(chemosensory proteins,简称CSPs)除了具有感知化学分子的功能,还与昆虫个体生长与发育、生殖、杀虫剂抗性等密切相关。黄胸蓟马(Thrips hawaiiensis)广泛分布于亚洲热带、亚热带和北美南部,是一种重要的农业和园艺作物害虫。本研究克隆鉴定了黄胸蓟马化学感受蛋白基因ThawCSP1开放阅读框(ORF),然后利用MEGA 7.0软件以邻接法构建ThawCSP1系统发育树,最后利用RT-qPCR、免疫荧光、免疫电镜技术,从mRNA和蛋白水平分析黄胸蓟马ThawCSP1基因的表达情况。结果表明,黄胸蓟马ThawCSP1基因(GenBank登录号:OQ730210)ORF为405 bp,编码134个氨基酸,预测蛋白分子量为15.181 ku。分子进化树显示ThawCSP1与同属缨翅目的西花蓟马、花蓟马和牛角花齿蓟马CSPs序列同源性分别为79.55%、80.30%、76.52%。ThawCSP1基因在黄胸蓟马各个发育阶段均有表达,其中羽化1、5、10 d的成虫相对表达量最高,其次是1龄、2龄若虫和羽化15 d的成虫,蛹期的表达量最低;在黄胸蓟马成虫不同组织中,ThawCSP1表达量最高的是触角,其次是足和头部,分别是腹部表达量的22233、181.60、79.03倍。免疫荧光和免疫电镜观察也表明,ThawCSP1蛋白在黄胸蓟马触角高表达。研究结果将为解析ThawCSP1基因功能提供试验依据,也为基于昆虫CSPs研发高效引诱剂提供了理论依据。
Abstract:
-

参考文献/References:

[1]Palmer J M,Wetton M N. A morphometric analysis of the Thrips hawaiiensis (Morgan) species-group (Thysanoptera:Thripidae)[J]. Bulletin of Entomological Research,1987,77(3):397-406.
[2]张帆,付步礼,刘奎,等. 温度对香蕉花蓟马发育和存活的影响[J]. 生态学报,2014,34(14):3895-3899.
[3]曾鑫年,林进添. 黄胸蓟马对香蕉的危害及其防治[J]. 植物保护,1998,24(6):15-17.
[4]李强,刘奎,付步礼,等. 不同食料对黄胸蓟马生物学特性的影响[J]. 环境昆虫学报,2018,40(1):136-143.
[5]Wu Y,Liu K,Qiu H Y,et al. Polymorphic microsatellite markers in Thrips hawaiiensis (Thysanoptera:Thripidae)[J]. Applied Entomology and Zoology,2014,49(4):619-622.
[6]卢辉,徐雪莲,卢芙萍,等. 温度对黄胸蓟马生长发育的影响[J]. 中国农学通报,2011,27(21):296-300.
[7]Fu B L,Qiu H Y,Li Q A,et al. Flower injection of imidacloprid and spirotetramat:a novel tool for the management of banana thrips Thrips hawaiiensis[J]. Journal of Pest Science,2020,93(3):1073-1084.
[8]Atakan E,Pehlivan S,Achiri T D. Pest status of the Hawaiian flower thrips,Thrips hawaiiensis (Morgan) (Thysanoptera:Thripidae) in lemons in the Mediterranean region of Turkey[J]. Phytoparasitica,2021,49(4):513-525.
[9]Fu B L,Li Q,Qiu H Y,et al. Oviposition,feeding preference,and biological performance of Thrips hawaiiensis on four host plants with and without supplemental foods[J]. Arthropod-Plant Interactions,2019,13(3):441-452.
[10]Cao Y,Reitz S R,Germinara G S,et al. Host preference of Thrips hawaiiensis for different ornamental plants[J]. Journal of Pest Science,2022,95(2):761-770.
[11]Murai T. Development and reproductive capacity of Thrips hawaiiensis (Thysanoptera:Thripidae) and its potential as a major pest[J]. Bulletin of Entomological Research,2001,91(3):193-198.
[12]Lin T,You Y,Zeng Z H,et al. Temperature-dependent demography of Thrips hawaiiensis (Thysanoptera:Thripidae):implications for prevention and control[J]. Environmental Entomology,2021,50(6):1455-1465.
[13]Morse J G,Hoddle M S. Invasion biology of thrips[J]. Annual Review of Entomology,2006,51:67-89.
[14]Lin T,Zeng Z H,Chen Y X,et al. Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera:Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera:Thripidae) pests[J]. Ecotoxicology and Environmental Safety,2021,226:112812.
[15]付步礼,曾东强,刘奎,等. 蓟马类害虫抗药性研究进展[J]. 农学学报,2014,4(3):28-34.
[16]林涛,林硕,陈艺欣,等. 六种新烟碱类杀虫剂和三氟苯嘧啶对黄胸蓟马及南方小花蝽的选择毒性[J]. 昆虫学报,2022,65(10):1295-1305.
[17]Fu B L,Qiu H Y,Li Q,et al. Analysis of seasonal and annual field-evolved insecticide resistance in populations of Thrips hawaiiensis in banana orchards[J]. Journal of Pest Science,2019,92(3):1293-1307.
[18]Leal W S. Odorant reception in insects:roles of receptors,binding proteins,and degrading enzymes[J]. Annual Review of Entomology,2013,58(1):373-391.
[19]Suh E,Bohbot J D,Zwiebel L J. Peripheral olfactory signaling in insects[J]. Current Opinion in Insect Science,2014,6:86-92.
[20]吴帆,张莉,邱一蕾,等. 昆虫嗅觉结合蛋白研究进展[J]. 昆虫学报,2021,64(4):523-535.
[21]万新龙,杜永均. 昆虫嗅觉系统结构与功能研究进展[J]. 昆虫学报,2015,58(6):688-698.
[22]Brito N F,Moreira M F,Melo A C A. A look inside odorant-binding proteins in insect chemoreception[J]. Journal of Insect Physiology,2016,95:51-65.
[23]Pikielny C W,Hasan G,Rouyer F,et al. Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs[J]. Neuron,1994,12(1):35-49.
[24]Wanner K W,Willis L G,Theilmann D A,et al. Analysis of the insect OS-D-like gene family[J]. Journal of Chemical Ecology,2004,30(5):889-911.
[25]Lartigue A,Campanacci V,Roussel A,et al. X-ray structure and ligand binding study of a moth chemosensory protein[J]. Journal of Biological Chemistry,2002,277(35):32094-32098.
[26]McDonald M J,Rosbash M. Microarray analysis and organization of circadian gene expression in drosophila[J]. Cell,2001,107(5):567-578.
[27]Sabatier L,Jouanguy E,Dostert C,et al. Pherokine-2 and-3:two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections[J]. European Journal of Biochemistry,2003,270(16):3398-3407.
[28]Stathopoulos A,van Drenth M,Erives A,et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo[J]. Cell,2002,111(5):687-701.
[29]Forêt S,Wanner K W,Maleszka R.Chemosensory proteins in the honey bee:insights from the annotated genome,comparative analyses and expressional profiling[J]. Insect Biochemistry and Molecular Biology,2007,37(1):19-28.
[30]Zhu J,Iovinella I,Dani F R,et al. Chemosensory proteins:a versatile binding family[M]//Picimbon J F. Olfactory concepts of insect control-alternative to insecticides.Cham:Springer,2019:147-169.
[31]Liu Y Q,Luo Y N,Du L X,et al. Antennal transcriptome analysis of olfactory genes and characterization of odorant binding proteins in Odontothrips loti (Thysanoptera:Thripidae)[J]. International Journal of Molecular Sciences,2023,24(6):5284.
[32]Li X W,Cheng J H,Chen L M,et al. Comparison and functional analysis of odorant-binding proteins and chemosensory proteins in two closely related thrips species,Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera:Thripidae) based on antennal transcriptome analysis[J]. International Journal of Molecular Sciences,2022,23(22):13900.
[33]刘宇艳,王谅,张祥琴,等. 黄胸蓟马触角感器的形态和分布[J]. 昆虫学报,2021,64(4):498-509.
[34]Chen Y,Liu Y Y,Wang L A,et al. The infection route of tomato zonate spot virus in the digestive system of its insect vector Frankliniella occidentalis[J]. Frontiers in Microbiology,2022,13:911751.
[35]郑宽瑜,董家红,方琦,等. 胶体金免疫电镜技术检测番茄环纹斑点病毒[J]. 电子显微学报,2015,34(1):67-70.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-11
基金项目:福建省属公益类科研院所基本科研专项(编号:2022R1024006、2022R1024004);福建省农业科学院科技项目(编号:CXTD2021004-3、 XTCXGC2021011、XTCXGC2021017)。
作者简介:李恒(1993—),女,河南驻马店人,硕士,研究实习员,从事农业昆虫与害虫防治研究。E-mail:592995627@qq.com。
通信作者:陈勇,博士,副研究员,从事媒介昆虫传播病害机制与昆虫生态学研究,E-mail:cheny0903@163.com;魏辉,博士,研究员,从事化学生态学研究,E-mail:weihui@faas.cn。
更新日期/Last Update: 2023-10-05