|本期目录/Table of Contents|

[1]刘宏祥,朱春红,宋卫涛,等.鸭胚胎发育后期胸肌萎缩相关通路及基因鉴定[J].江苏农业科学,2023,51(22):190-199.
 Liu Hongxiang,et al.Identification of pathways and genes associated with pectoral muscle atrophy in late embryonic development of ducks[J].Jiangsu Agricultural Sciences,2023,51(22):190-199.
点击复制

鸭胚胎发育后期胸肌萎缩相关通路及基因鉴定(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第22期
页码:
190-199
栏目:
畜牧兽医与水产蚕桑
出版日期:
2023-12-04

文章信息/Info

Title:
Identification of pathways and genes associated with pectoral muscle atrophy in late embryonic development of ducks
作者:
刘宏祥朱春红宋卫涛陶志云徐文娟章双杰王志成李慧芳
江苏省家禽科学研究所,江苏扬州 225125
Author(s):
Liu Hongxianget al
关键词:
胚胎胸肌WGCNAGSEA
Keywords:
-
分类号:
S834.2
DOI:
-
文献标志码:
A
摘要:
与哺乳动物不同,禽类胚胎在卵中发育,在胚胎后期表现为胸肌萎缩,为探明其涉及的分子机制,探索高邮鸭和金定鸭在孵化后18胚龄(ed)至出雏后7日龄(d)的胸肌发育规律,在21 ed、27 ed和5 d 3个时间点采集胸肌样品进行转录组测序(RNA-seq)。采用加权基因共表达网络分析(WGCNA),以及基于KEGG数据库的过表征(ORA-KEGG)和基因集富集分析(GSEA-KEGG)2种功能富集分析方法,鉴定与27 ed胸肌萎缩特征相关的信号通路及相关基因;最后通过实时荧光定量PCR(qRT-PCR)方法验证WGCNA得到的棕色模块中核心基因的表达水平。高邮鸭和金定鸭的胸肌质量均从18 ed到24 ed迅速增加,24 ed开始到1 d逐渐下降,1 d后继续增加。通过WGCNA得到的7个共表达模块中棕色模块与27 ed的相关性最高(r=0.98,P=2×10-12),该模块内的基因通过ORA-KEGG方法富集到了氧化磷酸化和柠檬酸循环2条能量代谢相关的信号通路。通过GSE-KEGG方法对所有转录表达的基因功能富集,挖掘到了自噬相关的信号通路。qRT-PCR验证的棕色模块内基因中,自噬通路中的突触体相关蛋白29(SNAP29)和蛋白激酶AMP激活的催化亚基α2(PRKAA2)基因在27 ed时表达量显著增加(P<0.05)。在胚胎后期,鸭胸肌出现发育停滞甚至萎缩,这可能是胸肌动员降解以释放能量从而应对能量紧张状态的结果。在这一过程中,能量传感器AMPK的激活和自噬途径中SNAP29等关键基因表达的升高可能是胸肌蛋白质降解途径激活的原因。
Abstract:
-

参考文献/References:

[1]Smith J H. Relation of body size to muscle cell size and number in the chicken[J]. Poultry Science,1963,42(2):283-290.
[2]Rehfeldt C,Stickland N C,Fiedler I,et al. Environmental and genetic factors as sources of variation in skeletal muscle fibre number[J]. Basic and Applied Myology,1999,9(5):235-254.
[3]Picard B,Lefaucheur L,Berri C,et al. Muscle fibre ontogenesis in farm animal species[J]. Reproduction Nutrition Development,2002,42(5):415-431.
[4]Swatland H J. Muscle growth in the fetal and neonatal pig[J]. Journal of Animal Science,1973,37(2):536-545.
[5]Chen W,Tangara M,Xu J,et al. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates[J]. Experimental Physiology,2012,97(7):861-872.
[6]Gu L H,Xu T S,Huang W,et al. Developmental characteristics of pectoralis muscle in Pekin duck embryos[J]. Genetics and Molecular Research,2013,12(4):6733-6742.
[7]Moore D T. The influence of early nutrition on muscle development in the poult[D]. North Carolina:North Carolina State University,2005.
[8]Moore D T,Ferket P R,Mozdziak P E. Muscle development in the late embryonic and early post-hatch poult[J]. International Journal of Poultry Science,2005,4(3):138-142.
[9]Chen W,Lv Y T,Zhang H X,et al. Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation[J]. Poultry Science,2013,92(10):2754-2764.
[10]李德生. 胚胎期外源性营养物质介入对鹅胸肌及肠道发育规律的影响研究[D]. 长春:吉林农业大学,2016.
[11]Trapnell C,Pachter L,Salzberg S L. TopHat:discovering splice junctions with RNA-Seq[J]. Bioinformatics,2009,25(9):1105-1111.
[12]Anders S,Pyl P T,Huber W. HTSeq-A Python framework to work with high-throughput sequencing data[J]. Bioinformatics,2015,31(2):166-169.
[13]Mortazavi A,Williams B A,Mccue K,et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods,2008,5(7):621-628.
[14]Langfelder P,Horvath S. WGCNA:an R package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9(1):559.
[15]Yip A M,Horvath S. Gene network interconnectedness and the generalized topological overlap measure[J]. BMC Bioinformatics,2007,8:22.
[16]Li G H,Zhang T,Zhang G X,et al. Analysis of gene co-expression networks and function modules at different developmental stages of chicken breast muscle[J]. Biochemical and Biophysical Research Communications,2019,508(1):177-183.
[17]Wu T Z,Hu E Q,Xu S B,et al. clusterProfiler 4.0:a universal enrichment tool for interpreting omics data[J]. The Innovation,2021,2(3):100141.
[18]Yang C Y,Zhu Y,Ding Y L,et al. Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle[J]. Gene,2022,807:145934.
[19]Wan Q,Tang J,Han Y,et al. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma[J]. Experimental Eye Research,2018,166:13-20.
[20]Wang R,Xue Y S,Fan J,et al. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit[J]. Genome Biology,2021,22(1):313.
[21]Yang Y,Han L,Yuan Y,et al. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types[J]. Nature Communications,2014,5(1):3231.
[22]Jin X J,Li J,Li W,et al. Weighted gene co-expression network analysis reveals specific modules and biomarkers in Parkinsons disease[J]. Neuroscience Letters,2020,728:134950.
[23]Lehninger A L,Wadkins C L,Cooper C,et al. Oxidative phosphorylation[J]. Science,1958,128(3322):450-456.
[24]Korzeniewski B. The modeling of oxidative phosphorylation in skeletal muscle[J]. The Japanese Journal of Physiology,2004,54(6):511-516.
[25]Foye O T. The biochemical and molecular effects of amniotic nutrient administration,“in OVO feeding” on intestinal development and function and carbohydrate metabolism in turkey embryos and poult[D]. North Carolina:North Carolina State University,2005.
[26]Chen W,Wang R,Wan H F,et al. Influence of in ovo injection of glutamine and carbohydrates on digestive organs and pectoralis muscle mass in the duck[J]. British Poultry Science,2009,50(4):436-442.
[27]Milan G,Romanello V,Pescatore F,et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy[J]. Nature Communications,2015,6:6670.
[28]Mammucari C,Milan G,Romanello V,et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metabolism,2007,6(6):458-471.
[29]Matsui T,Jiang P,Nakano S,et al. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17[J]. The Journal of Cell Biology,2018,217(8):2633-2645.
[30]Tian X Y,Teng J L,Chen J G. New insights regarding SNARE proteins in autophagosome-lysosome fusion[J]. Autophagy,2021,17(10):2680-2688.
[31]Takats S,Nagy P,Varga ,et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila[J]. The Journal of Cell Biology,2013,201(4):531-539.
[32]Guo B,Liang Q Q,Li L,et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation[J]. Nature Cell Biology,2014,16(12):1215-1226.
[33]Xiao B,Sanders M J,Underwood E,et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature,2011,472(7342):230-233.
[34]Hardie D G,Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle[J]. Physiology,2006,21(1):48-60.
[35]Herzig S,Shaw R J. AMPK:guardian of metabolism and mitochondrial homeostasis[J]. Nature Reviews Molecular Cell Biology,2018,19(2):121-135.
[36]Thomson D M. The role of AMPK in the regulation of skeletal muscle size,hypertrophy,and regeneration[J]. International Journal of Molecular Sciences,2018,19(10):3125.
[37]Martin-Rincon M,Morales-Alamo D,Calbet J A L. Exercise-mediated modulation of autophagy in skeletal muscle[J]. Scandinavian Journal of Medicine & Science in Sports,2018,28(3):772-781.
[38]Hardie D G. AMPK-sensing energy while talking to other signaling pathways[J]. Cell Metabolism,2014,20(6):939-952.
[39]Kim J,Kundu M,Viollet B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology,2011,13(2):132-141.
[40]Weerasekara V K,Panek D J,Broadbent D G,et al. Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9[J]. Molecular and Cellular Biology,2014,34(24):4379-4388.
[41]Zhang D Y,Wang W,Sun X J,et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388[J]. Autophagy,2016,12(9):1447-1459.

相似文献/References:

[1]刘玉华,陈光明,方向红,等.泰州地区鸭源大肠杆菌的分离鉴定与耐药性试验[J].江苏农业科学,2014,42(12):260.
 Liu Yuhua,et al.Identification and drug resistance test of duck Escherichia coli in Taizhou area[J].Jiangsu Agricultural Sciences,2014,42(22):260.
[2]陈学文,陈再忠.中华青鳉胚胎低温保存研究[J].江苏农业科学,2013,41(10):192.
 Chen Xueweng,et al.Study on cryopreservation of Chinese medaka embryo[J].Jiangsu Agricultural Sciences,2013,41(22):192.
[3]张敬峰,李银,赵冬敏,等.鸭源坦布苏病毒株NJX-4的分离鉴定及部分生物学特性[J].江苏农业科学,2013,41(11):228.
 Zhang Jingfeng,et al.Isolation,identification and partial biological characteristics of duck-derived Tembusu virus strain NJX-4[J].Jiangsu Agricultural Sciences,2013,41(22):228.
[4]王淑娟,刘文举,王立克,等.褪黑激素对雌性动物生殖系统调节作用的研究进展[J].江苏农业科学,2016,44(06):15.
 Wang Shujuan,et al.Research progress of regulating effect of mellocated atonin on female reproductive system[J].Jiangsu Agricultural Sciences,2016,44(22):15.
[5]宋迟,宋卫涛,胡艳,等.鸭肝脏IGF1基因早期发育表达[J].江苏农业科学,2015,43(08):42.
 Song Chi,et al.Gene expression profile of IGF1 mRNA in duck liver during early development[J].Jiangsu Agricultural Sciences,2015,43(22):42.
[6]李迎晓,安辉,焦凤超,等.鸭大肠杆菌与沙门氏菌混合感染的分离鉴定及药敏试验[J].江苏农业科学,2015,43(04):224.
 Li Yingxiao,et al.Isolation and drug sensitivity of co-infection of Escherichia coli and Salmonella[J].Jiangsu Agricultural Sciences,2015,43(22):224.
[7]詹 年,李运生,韩春杨,等.安徽白山羊超数排卵技术[J].江苏农业科学,2015,43(02):214.
 Zhan Nian,et al.Study on superovulation of Anhui white goat[J].Jiangsu Agricultural Sciences,2015,43(22):214.
[8]章双杰,王靖,杨建生,等.长三角地区兼用型鸭全基因组遗传多样性分析[J].江苏农业科学,2017,45(17):32.
 Zhang Shuangjie,et al.Genetic diversity analysis of whole genome of duck in Yangtze Delta region[J].Jiangsu Agricultural Sciences,2017,45(22):32.
[9]王永娟,董亚青,郭方超,等.鸭源H9N2亚型禽流感病毒RT-PCR检测方法的建立[J].江苏农业科学,2018,46(1):105.
 Wang Yongjuan,et al.Establishment of RT-PCR assay for detecting H9N2 subtype avian influenza virus in ducks[J].Jiangsu Agricultural Sciences,2018,46(22):105.
[10]彭新亮,伦峰,郭旭升,等.黄尾鲴胚胎及仔鱼的发育[J].江苏农业科学,2018,46(22):164.
 Peng Xinliang,et al.Embryonic and larval development of Xenocypris davidi[J].Jiangsu Agricultural Sciences,2018,46(22):164.

备注/Memo

备注/Memo:
收稿日期:2023-05-08
基金项目:江苏省种业振兴“揭榜挂帅”项目(编号:JBGS[2021]111、JBGS[2021]030);苏州市科技计划(编号:SNG2020068);江苏省现代农业(水禽)产业技术体系项目(编号:JATS[2022]404)。
作者简介:刘宏祥(1985—),男,江苏仪征人,硕士,副研究员,主要从事家禽遗传资源保护与利用研究。E-mail:lhxatyz@foxmail.com。
通信作者:李慧芳,博士,研究员,主要从事家禽遗传资源保护与利用研究。E-mail:lhfxf_002@aliyun.com。
更新日期/Last Update: 2023-11-20