|本期目录/Table of Contents|

[1]潘琦,王浩,齐开杰,等.梨萼片脱落过程中木质素生物合成与活性氧代谢的关联分析[J].江苏农业科学,2023,51(23):157-164.
 Pan Qi,et al.Association analysis of lignin biosynthesis and reactive oxygen species metabolism during sepal abscission in pear[J].Jiangsu Agricultural Sciences,2023,51(23):157-164.
点击复制

梨萼片脱落过程中木质素生物合成与活性氧代谢的关联分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第23期
页码:
157-164
栏目:
园艺与林学
出版日期:
2023-12-05

文章信息/Info

Title:
Association analysis of lignin biosynthesis and reactive oxygen species metabolism during sepal abscission in pear
作者:
潘琦1王浩2齐开杰1谢智华1崔艳波3包建平2张绍铃1陶书田1
1.南京农业大学园艺学院,江苏南京 210095; 2.塔里木大学植物科学学院,新疆阿拉尔 843300;3.南京宁翠生物种业有限公司,江苏南京 210095
Author(s):
Pan Qiet al
关键词:
萼片脱落活性氧代谢木质素合成关联分析
Keywords:
-
分类号:
S661.201
DOI:
-
文献标志码:
A
摘要:
利用DPI、H2O2、DPI+H2O2对梨幼果萼筒部位进行处理,随后对离区细胞进行观察,此外对样品进行液氮速冻,通过测定萼片离区木质素和活性氧代谢相关指标,研究萼片离区内的木质素生物合成过程与活性氧代谢间是否存在协同作用。结果表明,离层对DPI的抑制效果始终敏感,DPI可以通过降低过氧化氢含量来减少木质素含量,外源过氧化氢在处理的早期没有显著作用,而在后期可以促进离层内源过氧化氢形成,从而减缓DPI的抑制效果。皮尔森相关系数表明,萼筒离层中活性氧代谢相关指标与木质素生物合成指标呈正比例关系,特别是过氧化氢在离层中的累积可以促进细胞壁增厚。
Abstract:
-

参考文献/References:

[1]王国平,田路明,李秀根,等. 新中国果树科学研究70年——梨[J]. 果树学报,2019,36(10):1273-1282.
[2]邵月霞. 库尔勒香梨萼片脱落及果实发育变化研究[D]. 石河子:石河子大学,2007.
[3]Qi X X,Wu J,Wang L F,et al. Identifying the candidate genes involved in the calyx abscission process of ‘Kuerlexiangli’ (Pyrus sinkiangensis Yu) by digital transcript abundance measurements[J]. BMC Genomics,2013,14:727.
[4]马宏超,王燕凌,文旭,等. 不同药剂处理对库尔勒香梨脱萼和缩萼果萼筒显微结构的影响[J]. 果树学报,2011,28(3):518-520,551.
[5]Cheng X,Li M L,Li D H,et al. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit[J]. Biology Open,2017,6(11):1602-1613.
[6]Dardick C,Callahan A M. Evolution of the fruit endocarp:molecular mechanisms underlying adaptations in seed protection and dispersal strategies[J]. Frontiers in Plant Science,2014,5:284.
[7]张俊超. 基于转录组测序挖掘老芒麦落粒候选基因及其功能分析[D]. 兰州:兰州大学,2020.
[8]Lee Y,Yoon T H,Lee J,et al. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis[J]. Cell,2018,173(6):1468-1480.
[9]王志科. 马铃薯块茎休眠解除过程中H2O2与NO作用机理的解析[D]. 兰州:甘肃农业大学,2020.
[10]Ros-Barceló A,Pomar F,López-Serrano M,et al. Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem[J]. Plant Physiology and Biochemistry,2002,40(4):325-332.
[11]Huang W K,Ji H L,Gheysen G,et al. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation[J]. Molecular Plant Pathology,2016,17(4):614-624.
[12]Donnini S,DellOrto M,Zocchi G. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes[J]. Tree Physiology,2011,31(1):102-113.
[13]Li L,Li M,Yu L P,et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity[J]. Cell Host & Microbe,2014,15(3):329-338.
[14]张杰. 马铃薯StSN2抑制H2O2积累和木质素合成延长块茎休眠研究[D]. 雅安:四川农业大学,2020.
[15]Shigeto J,Itoh Y,Hirao S,et al. Simultaneously disrupting AtPrx2,AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem[J]. Journal of Integrative Plant Biology,2015,57(4):349-356.
[16]Shigeto J,Kiyonaga Y,Fujita K,et al. Putative cationic cell-wall-bound peroxidase homologues in ArabidopsisAtPrx2,AtPrx25,and AtPrx71,are involved in lignification[J]. Journal of Agricultural and Food Chemistry,2013,61(16):3781-3788.
[17]Fagerstedt K V,Kukkola E M,Koistinen V V T,et al. Cell wall lignin is polymerised by class Ⅲ secretable plant peroxidases in Norway spruce[J]. Journal of Integrative Plant Biology,2010,52(2):186-194.
[18]Liu C J. Deciphering the enigma of lignification:precursor transport,oxidation,and the topochemistry of lignin assembly[J]. Molecular Plant,2012,5(2):304-317.
[19]Tao S T,Khanizadeh S,Zhang H,et al. Anatomy,ultrastructure and lignin distribution of stone cells in two Pyrus species[J]. Plant Science,2009,176(3):413-419.
[20]刘若南. 赤霉素和GID1在调控梨果实木质素形成中的功能研究[D]. 南京:南京农业大学,2018.
[21]张虎平. 梨果实内糖的转运及积累特性研究[D]. 南京:南京农业大学,2011.
[22]Ma L,Zhou L,Quan S W,et al. Integrated analysis of mRNA-seq and miRNA-seq in calyx abscission zone of Korla fragrant pear involved in calyx persistence[J]. BMC Plant Biology,2019,19(1):192.
[23]Gui T Y,Gao D H,Ding H C,et al. Identification of respiratory burst oxidase homolog (rboh) family genes from Pyropia yezoensis and their correlation with archeospore release[J]. Frontiers in Plant Science,2022,13:929299.
[24]Hoffmann N,Benske A,Betz H,et al. Laccases and peroxidases Co-localize in lignified secondary cell walls throughout stem development[J]. Plant Physiology,2020,184(2):806-822.
[25]Liu Q Q,Zheng L,He F,et al. Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots[J]. Plant and Soil,2014,387:323-336.
[26]Heng W,Wang M D,Yang J Y,et al. Relationship between H2O2 in polyamine metabolism and lignin in the exocarp of a russet mutant of ‘Dangshansuli’ pear (Pyrus bretschneideri Rehd.)[J]. Plant Molecular Biology Reporter,2016,34(6):1056-1063.
[27]Passardi F,Penel C,Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall[J]. Trends in Plant Science,2004,9(11):534-540.

相似文献/References:

[1]齐付国,刘小飞,孙景生.不同供水水平对间作甜瓜叶片活性氧代谢及光合特性的影响[J].江苏农业科学,2015,43(09):199.
 Qi Fuguo,et al.Effects of different water treatments on active oxygen metabolism and photosynthetic characteristics of intercropping melon leaf[J].Jiangsu Agricultural Sciences,2015,43(23):199.
[2]刘恒蔚,颜婕,袁卫明,等.白沙枇杷采后果皮与果肉活性氧代谢差异研究[J].江苏农业科学,2018,46(1):151.
 Liu Hengwei,et al.Study on reactive oxygen metabolism difference between pericarp and flesh of postharvest white flesh loquat fruit[J].Jiangsu Agricultural Sciences,2018,46(23):151.
[3]陈巧艳,李迎迎,陈刘平,等.低温胁迫对不同小麦品种结实率和活性氧代谢的影响[J].江苏农业科学,2018,46(11):63.
 Chen Qiaoyan,et al.Influences of low temperature stress on setting rate and active oxygen metabolism of different wheat varieties[J].Jiangsu Agricultural Sciences,2018,46(23):63.
[4]董静,魏福友,邢锦城,等.马齿苋幼苗对盐碱胁迫的生理响应[J].江苏农业科学,2019,47(13):153.
 Dong Jing,et al.Physiological responses of Portulaca oleracea seedlings to salt and alkali stresses[J].Jiangsu Agricultural Sciences,2019,47(23):153.

备注/Memo

备注/Memo:
收稿日期:2023-03-17
基金项目:国家自然科学基金(编号:U2003121、31972361、31372044);南京农业科技产学研合作专项(编号:2022RHCXY江宁02)。
作者简介:潘琦(1999—),男,福建福州人,硕士,主要从事果树生理与分子生物学研究。E-mail:1440734764@qq.com。
通信作者:陶书田,博士,教授,博士生导师,主要从事梨果实石细胞发育及木质素合成等研究。E-mail:taost@njau.edu.cn。
更新日期/Last Update: 2023-12-05