|本期目录/Table of Contents|

[1]龙阳,肖小玲.基于多注意力机制的苹果叶部病害检测方法[J].江苏农业科学,2023,51(23):178-186.
 Long Yang,et al.Apple leaf disease recognition method based on multi-attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(23):178-186.
点击复制

基于多注意力机制的苹果叶部病害检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第23期
页码:
178-186
栏目:
农业工程与信息技术
出版日期:
2023-12-05

文章信息/Info

Title:
Apple leaf disease recognition method based on multi-attention mechanism
作者:
龙阳肖小玲
长江大学计算机科学学院,湖北荆州 434100
Author(s):
Long Yanget al
关键词:
苹果叶部病害YOLO v5sConvNeXtBlockACmixCBAMSK注意力机制
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
针对苹果叶部病害在复杂环境下出现的多尺度病斑识别和定位不准确等难题,并提高对小目标病害特征的识别能力,提出了一种基于改进YOLO v5s的苹果叶部病害检测算法。首先,在骨干网络中采用ConvNeXtBlock模块替换传统的CSP模块,以增强对病害特征的提取能力。同时,为了更准确地检测小目标病害特征,引入自注意力和卷积集成的ACmix注意力机制,使得改进后的骨干网络在复杂环境下也能更准确地检测到苹果叶部病害。在颈部网络中,采用通道和空间混合的CBAM注意力机制以及SK注意力机制,以进一步提高模型对多尺度病害特征的精确定位和提取能力,并赋予了模型更强的语义信息理解能力,使其能够更好地适应不同尺寸和复杂度的病害状况。试验结果表明,与传统的YOLO v5s相比,改进后的算法精确率提高了12.2百分点,召回率提高了12.0百分点,mAP@0.5提高了12.72百分点,平均精度达到94.03%,具有较好的识别精度,误检和漏检概率显著减少。本研究的改进算法在苹果叶部病害检测方面取得了显著成果。该算法不仅提高了对多尺度病害特征的识别和定位能力,在复杂环境下也能更准确地检测到小目标病害特征。这一算法的应用潜力不仅限于苹果叶部病害,还可推广至其他农作物病害检测领域,对于提高农业病害防控水平具有重要意义。
Abstract:
-

参考文献/References:

[1]王云露,吴杰芳,兰鹏,等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报,2022,7(1):153-159.
[2]Jiang P,Chen Y H,Liu B,et al. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks[J]. IEEE Access,2019,7:59069-59080.
[3]Sun H N,Xu H W,Liu B,et al. MEAN-SSD:a novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks[J]. Computers and Electronics in Agriculture,2021,189:106379.
[4]刘斌,徐皓玮,李承泽,等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报,2022,53(6):286-294.
[5][JP3]Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-06-10]. https://arxiv.org/abs/1409.1556.
[6]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston,2015:1-9.
[7]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,2016:770-778.
[8]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9]Lin T Y,Dollár P,Girshick R,et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,2017:936-944.
[10]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,2016:779-788.
[11]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[12]Yang Q,Duan S K,Wang L D. Efficient identification of apple leaf diseases in the wild using convolutional neural networks[J]. Agronomy,2022,12(11):2784.
[13]Hughes D P,Salathe M.An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. (2016-04-12)[2023-06-10]. https://arxiv.org/abs/1511.08060.
[14]Feng J Z,Chao X F. Apple tree leaf disease segmentation dataset[DS/OL]. (2022-03-31) [2023-06-10]. https://doi.org/10.11922/sciencedb.01627.
[15]Thapa R,Zhang K,Snavely N,et al. The Plant Pathology Challenge 2020 data set to classify foliar disease of apples[J]. Applications in Plant Sciences,2020,8(9):e11390.
[16]Liu S,Qi L,Qin H F,et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,2018:8759-8768.
[17]Liu Z,Mao H Z,Wu C Y,et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,2022:11966-11976.
[18]Pan X R,Ge C J,Lu R,et al. On the integration of self-attention and convolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,2022:805-815.
[19]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[20]Li X,Wang W H,Hu X L,et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,2020:510-519.
[21]Lin T Y,Goyal P,Girshick R,et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice,2017:2999-3007.

相似文献/References:

[1]赵方,左官芳,顾思睿,等.基于改进YOLO v5s的温室番茄检测模型轻量化研究[J].江苏农业科学,2024,52(8):200.
 Zhao Fang,et al.Lightweight research of greenhouse tomato detection model based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2024,52(23):200.

备注/Memo

备注/Memo:
收稿日期:2023-06-18
基金项目:国家自然科学基金(编号:61771354)。
作者简介:龙阳(1999—),男,贵州铜仁人,硕士研究生,研究方向为计算机视觉与目标检测。E-mail:2022710657@yangtzeu.edu.cn。
通信作者:肖小玲,博士,教授,研究方向为智能信息处理与网络安全。E-mail:xxl@yangtzeu.edu.cn。
更新日期/Last Update: 2023-12-05