|本期目录/Table of Contents|

[1]郑立津,赖慧捷,范辉华,等.氮沉降对闽楠幼苗生长和生理特性的影响[J].江苏农业科学,2024,52(2):152-158.
 Zheng Lijin,et al.Impacts of nitrogen deposition on growth and physiological characteristics of Phoebe bournei seedlings[J].Jiangsu Agricultural Sciences,2024,52(2):152-158.
点击复制

氮沉降对闽楠幼苗生长和生理特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第2期
页码:
152-158
栏目:
园艺与林学
出版日期:
2024-02-20

文章信息/Info

Title:
Impacts of nitrogen deposition on growth and physiological characteristics of Phoebe bournei seedlings
作者:
郑立津1赖慧捷1范辉华2林智榕1李成珺1刘爱琴1
1.福建农林大学林学院,福建福州 350002; 2.福建省林业科学研究院,福建福州 350012
Author(s):
Zheng Lijinet al
关键词:
氮沉降闽楠幼苗生理学特性生长
Keywords:
-
分类号:
S792.240.5;S718.43
DOI:
-
文献标志码:
A
摘要:
为了探讨不同氮沉降处理对闽楠生理生态过程的影响,揭示闽楠对不同形态氮沉降的形态和生理响应机制,选用闽楠幼苗为研究对象,选择氮源和氮浓度2个试验因素,氮源设硝态氮、铵态氮和混合氮3种形态,每种形态的氮素均设4个氮浓度水平[低氮沉降(30 kg/hm2,LN)、中氮沉降(60 kg/hm2,MN)和高氮沉降(90 kg/hm2,HN)和无氮沉降对照(0 kg/hm2,CK)],开展不同形态氮沉降对闽楠幼苗生长和生理生态学特性的影响研究。结果表明,不同形态氮沉降显著影响闽楠幼苗生长及其生理学过程。不同形态氮沉降能明显影响闽楠苗高和地径生长,引起闽楠幼苗各器官生物量积累的差异,改变闽楠幼苗叶片和根的形态。不同形态氮沉降对闽楠幼苗生理学过程有显著影响。随氮沉降浓度的增加,闽楠幼苗净光合速率、光系统的光化学反应降低。闽楠对不同形态氮沉降的适应性表现为铵态氮>混合氮>硝态氮,总体表现出“低促高抑”的趋势,即在低浓度范围内,能促进闽楠生长;超过一定阈值,闽楠幼苗净光合速率、光系统的光化学反应降低。说明闽楠在氮沉降条件下可通过生长和生理学过程的改变来适应氮沉降。研究结果可为制定闽楠人工林的经营对策提供科学依据。
Abstract:
-

参考文献/References:

[1]Gilliam F S,Burns D A,Driscoll C T,et al. Decreased atmospheric nitrogen deposition in eastern North America:predicted responses of forest ecosystems[J]. Environmental Pollution,2019,244:560-574.
[2]Pardo L H,Fenn M E,Goodale C L,et al. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States[J]. Ecological Applications,2011,21(8):3049-3082.
[3]Yao F F,Ding H M,Feng L L,et al. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions[J]. Environmental Science and Pollution Research,2016,23(9):8644-8658.
[4]Reich P B,Knops J,Tilman D,et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature,2001,410(6830):809-810.
[5]周桂圆. 珍贵树种闽楠人工林生长研究[J]. 林业与生态,2022(9):39-40.
[6]罗振财. 广西大桂山林场闽楠育苗造林技术[J]. 种子科技,2022,40(18):124-126.
[7]李德军,莫江明,方运霆,等. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J]. 植物生态学报,2005,29(4):543-549.
[8]Yue K,Fornara D A,Yang W Q,et al. Effects of three global change drivers on terrestrial C ∶N ∶P stoichiometry:a global synthesis[J]. Global Change Biology,2017,23(6):2450-2463.
[9]杜锟,张江勇,林勇明,等. 邓恩桉林土壤腐殖质对模拟硫、氮复合沉降的响应[J]. 森林与环境学报,2015,35(1):31-37.
[10]Knops J. Southern nitrogens new urea plant on stream[J/OL]. Chemical & Engineering News,2010,35(52)[2023-02-10]. https://vdocuments.mx/southern-nitrogens-new-urea-plant-on-stream.html?page=1.
[11]Li W B,Jin C J,Guan D X,et al. The effects of simulated nitrogen deposition on plant root traits:a meta-analysis[J]. Soil Biology and Biochemistry,2015,82:112-118.
[12]樊后保,袁颖红,王强,等. 氮沉降对杉木人工林土壤有机碳和全氮的影响[J]. 福建林学院学报,2007,27(1):1-6.
[13]Guan B,Xie B H,Yang S S,et al. Effects of five years nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta[J]. Ecological Engineering,2019,136:160-166.
[14]王一会,王志瑞,吴德景,等. 分光光度法测定地表水中叶绿素a的进一步研究[J]. 广州化工,2022,50(12):103-105.
[15]周丹,罗灿,于旭东,等. 波罗蜜叶片突变体叶绿素含量测定和超微结构观察[J]. 热带作物学报,2021,42(10):2935-2941.
[16]Du S S,Liu X J,Chen J D,et al. Prospects for solar-induced chlorophyll fluorescence remote sensing from the SIFIS payload onboard the TECIS-1 satellite[J]. Journal of Remote Sensing,2022,2022:9845432.
[17]沈彦. 盐碱环境胁迫对吸胀萌发期玉米种子SOD活性的影响[J]. 绿色科技,2022,24(13):121-122,126.
[18]陈鹏,刘奇志. 二斑叶螨为害对草莓叶片H2O2、MDA含量以及部分防御酶活性的影响[J]. 环境昆虫学报,2022,44(3):697-703.
[19]郭霄. 不同槭属植物幼苗对水分、光照及氮沉降的生理生态学响应[D]. 济南:山东大学,2014.
[20]黄瑞冬,王进军,许文娟. 玉米和高粱叶片叶绿素含量及动态的比较[J]. 杂粮作物,2005,25(1):30-31.
[21]俞飞,殷秀敏,伊力塔,等. 酸雨对杉木幼苗叶绿素荧光及生长量的影响[J]. 东北林业大学学报,2014,42(1):6-9.
[22]Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345.
[23]蔡乾坤,段洪浪,刘文飞,等. 氮沉降对杉木林土壤有效氮和磷含量的影响[J]. 森林与环境学报,2016,36(3):342-348.
[24]刘悦秋,孙向阳,王勇,等. 遮荫对异株荨麻光合特性和荧光参数的影响[J]. 生态学报,2007,27(8):3457-3464.
[25]Ding Y Q,Jin Y L,He K Z,et al. Low nitrogen fertilization alter rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil[J]. Frontiers in Microbiology,2020,11:678.
[26]Liu E N,Liu C P. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings[J]. Water,Air,& Soil Pollution,2011,215(1):127-135.

相似文献/References:

[1]杨君珑,李小伟.模拟氮沉降对干旱半干旱区几种杂草生长及光合特征的影响[J].江苏农业科学,2015,43(12):157.
 Yang Junlong,et al.Effects of simulated nitrogen deposition on growth and photosynthetic characteristic of weeds in arid and semiarid area[J].Jiangsu Agricultural Sciences,2015,43(2):157.
[2]魏枫,王慧娟,邱秀文,等.模拟氮沉降对樟树人工林土壤酶活性的影响[J].江苏农业科学,2019,47(19):129.
 Wei Feng,et al.Effects of simulated nitrogen deposition on soil enzyme activities in Cinnamomum camphora plantation[J].Jiangsu Agricultural Sciences,2019,47(2):129.
[3]王锦旗,宋玉芝,黄进.大气氮沉降对流域总贡献量估算方法研究[J].江苏农业科学,2020,48(11):246.
 Wang Jinqi,et al.Study on estimation method for total contribution of atmospheric nitrogen deposition to watershed[J].Jiangsu Agricultural Sciences,2020,48(2):246.

备注/Memo

备注/Memo:
收稿日期:2023-03-03
基金项目:国家重点研发计划(编号:2021YFD2201304-05);中央财政林业科技推广项目(编号:KEY23003XA)。
作者简介:郑立津(1995—),男,福建福州人,硕士研究生,研究方向为森林培育。E-mail:1529238633@qq.com。
通信作者:刘爱琴,研究员,硕士生导师,研究方向为森林培育与林木生理生化。E-mail:379244732@qq.com。
更新日期/Last Update: 2024-01-20