|本期目录/Table of Contents|

[1]鞠昕萌,黄逢龙,喻方圆.缓释肥和复合肥施氮量对青冈栎容器苗质量的影响[J].江苏农业科学,2024,52(5):151-158.
 Ju Xinmeng,et al.Impacts of nitrogen application amount of slow-release fertilizer and compound fertilizer on quality of Quercus glauca container seedlings[J].Jiangsu Agricultural Sciences,2024,52(5):151-158.
点击复制

缓释肥和复合肥施氮量对青冈栎容器苗质量的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第5期
页码:
151-158
栏目:
园艺与林学
出版日期:
2024-03-05

文章信息/Info

Title:
Impacts of nitrogen application amount of slow-release fertilizer and compound fertilizer on quality of Quercus glauca container seedlings
作者:
鞠昕萌1黄逢龙2喻方圆1
1.南京林业大学林学院/南方现代林业协同创新中心,江苏南京 210037; 2.江西省吉安市林业科学研究所,江西吉安 343000
Author(s):
Ju Xinmenget al
关键词:
青冈栎容器苗缓释肥复合肥苗木质量
Keywords:
-
分类号:
S792.189.05
DOI:
-
文献标志码:
A
摘要:
为探究缓释肥和复合肥不同施用水平对青冈栎容器苗生长、生物量和非结构性碳水化合物积累的影响,探索培育青冈栎容器苗的最佳肥料类型和施氮量,对青冈栎容器苗施用缓释肥和复合肥,分别设置4个施氮浓度梯度(0.1、0.2、0.3、0.4 g/株)和1个对照处理。在生长季末测量苗高、地径、根系指标,并将随机选取的苗木烘干,以测定生物量和非结构性碳水化合物含量。结果表明,缓释肥和复合肥均显著促进了青冈栎容器苗的生长。在同等用氮量情况下,施用缓释肥效果总体上优于复合肥。其中在H4处理下,青冈栎容器苗的苗高、地径、总根长、根表面积、根体积和根平均直径均为最大值,分别为69.08 cm、4.79 mm、281.92 cm、111.57 cm2、3.86 cm3和1.40 cm;在H3处理下,青冈栎容器苗的总生物量、可溶性糖和淀粉含量均为最大值,分别为6.09 g、207.22 mg/g和188.77 mg/g,分别是CK的186、1.33、1.76倍。施肥促进生物量更多地分配给青冈栎容器苗的茎和叶;可溶性糖多集中在叶部;淀粉多集中在根部。就青冈栎容器苗而言,施用缓释肥的总体效果优于复合肥,H3和H4处理下,青冈栎容器苗质量最好,结合成本、肥料利用率和实际效果等方面考虑,青冈栎容器苗的最佳肥料类型为缓释肥,最佳施肥处理是H3,即最佳缓释肥用量为2.14 g/株,施氮量为0.3 g/株。
Abstract:
-

参考文献/References:

[1]安建刚.有机肥等价替代下复合肥减量对套作马铃薯产量品质及土壤活性物质的影响[D]. 重庆:西南大学,2018:1-2.
[2]Oldroyd G E D,Leyser O. A plants diet,surviving in a variable nutrient environment[J]. Science,2020,368(6486):eaba0196.
[3]李玉玺,王语,张渝鹏,等. 苗期干旱胁迫和施氮对东北风沙土玉米生长、产量及氮素利用的影响[J/OL]. (2022-07-29)[2023-03-18]. 吉林农业大学学报:1-13. https://doiorg/10.133275-jlau.2021.1821.
[4]李洪忠,王德炉. 配方施肥对长柄水青冈容器苗生长及叶片元素质量分数的影响[J]. 东北林业大学学报,2023,51(3):13-17.
[5]Shan L N,He Y F,Chen J,et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J]. Journal of Environmental Sciences,2015,38:14-23.
[6]彭玉华,郝海坤,曹艳云,等. 缓释肥和复合肥对火力楠容器苗的影响[J]. 南方农业学报,2015,46(1):47-52.
[7]张金鑫. 不同配伍复合肥在设施环境下的氨挥发及对油菜生长的影响[D]. 泰安:山东农业大学,2021:4-8.
[8]刘兆辉,吴小宾,谭德水,等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学,2018,51(20):3827-3839.
[9]姚光刚,李国雷,郑永林,等. 缓释肥施用量对槲栎容器苗苗木质量的影响[J]. 南京林业大学学报(自然科学版),2019,43(1):69-75.
[10]Salifu K F,Jacobs D F. Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings[J]. Annals of Forest Science,2006,63(3):231-237.
[11]Jacobs D F,Rose R,Haase D L. Development of Douglas-fir seedling root architecture in response to localized nutrient supply[J]. Canadian Journal of Forest Research,2003,33(1):118-125.
[12]Wilson E R,Vitols K C,Park A. Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario,Canada[J]. New Forests,2007,34(2):163-176.
[13]Juntunen M L,Hammar T,Rikala R. Nitrogen and phosphorus leaching and uptake by container birch seedlings (Betula pendula Roth) grown in three different fertilizations[J]. New Forests,2003,25(2):133-147.
[14]Haase D L,Rose R,Trobaugh J. Field performance of three stock sizes of douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium[J]. New Forests,2006,31(1):1-24.
[15]Sloan J L,Jacobs D F. Leaf physiology and sugar concentrations of transplanted Quercus rubra seedlings in relation to nutrient and water availability[J]. New Forests,2012,43(5/6):779-790.
[16]Fu Y L,Oliet J A,Li G L,et al. Effect of controlled release fertilizer type and rate on mineral nutrients,non-structural carbohydrates,and field performance of Chinese pine container-grown seedlings[J]. Silva Fennica,2017,51(2):1607.
[17]王艺,王秀花,吴小林,等. 缓释肥加载对浙江楠和闽楠容器苗生长和养分库构建的影响[J]. 林业科学,2013,49(12):57-63.
[18]楚秀丽,王秀花,张东北,等. 基质配比和缓释肥添加量对浙江楠大规格容器苗质量的影响[J]. 南京林业大学学报(自然科学版),2015,39(6):67-73.
[19]Tong X,Xu N N,Li L,et al. Development and characterization of polymorphic microsatellite markers in Cyclobalanopsis glauca(Fagaceae)[J]. American Journal of Botany,2012,99(3):e120-e122.
[20]Xia K,Seal C E,Chen W Y,et al. Fruit oil contents of the genus Quercus (Fagaceae):a comparative study on acorns of subgenus Quercus and the Asian subgenus Cyclobalanopsis[J]. Seed Science and Technology,2010,38(1):136-145.
[21]?瘙塁hretolu D,Renda G. The polyphenolic profile of oak (Quercus) species:a phytochemical and pharmacological overview[J]. Phytochemistry Reviews,2020,19(6):1379-1426.
[22]Zhang Z F,Zhang J C,Huang Y Q.Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions[J]. New Forests,2014,45(4):545-556.
[23]Tsay J S,Ko P H,Chang P T. Carbon storage potential of avenue trees:a comparison of Barringtonia racemosa,Cyclobalanopsis glauca,and Alnus formosana[J]. Journal of Forestry Research,2015,26(2):307-314.
[24]Zhang H,Song T Q,Wang K L,et al. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China[J]. Ecological Engineering,2014,73:184-191.
[25]Xue L,Ren H D,Long W,et al. Ecophysiological responses of calcicole Cyclobalanopsis glauca (Thunb.) Oerst.to drought stress and calcium supply[J]. Forests,2018,9(11):667.
[26]Kamiya K,Ogasahara M,Kenzo T,et al. Genetic diversity and structure of Quercus hondae,a rare evergreen oak species in southwestern Japan[J]. Forests,2022,13(4):579.
[27]Li Y F,Li M H,Ming A G,et al. Spatial pattern dynamics among co-dominant populations in early secondary forests in Southwest China[J]. Journal of Forestry Research,2021,32(4):1373-1384.
[28]Li G L,Zhu Y,Liu Y,et al. Combined effects of pre-hardening and fall fertilization on nitrogen translocation and storage in Quercus variabilis seedlings[J]. European Journal of Forest Research,2014,133(6):983-992.
[29]程中倩,李国雷.氮肥和容器深度对栓皮栎容器苗生长、根系结构及养分贮存的影响[J]. 林业科学,2016,52(4):21-29.
[30]Greenan N S,Mulvaney R L,Sims G K. A microscale method for colorimetric determination of urea in soil extracts[J]. Communications in Soil Science and Plant Analysis,1995,26(15/16):2519-2529.
[31]Valinger E,Sjgren H,Nord G,et al. Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden[J]. Scandinavian Journal of Forest Research,2019,34(1):33-38.
[32]Jacobs D F,Salifu K F,Seifert J R. Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting[J]. Forest Ecology and Management,2005,214(1/2/3):28-39.
[33]Davis A S,Jacobs D F,Wightman K E,et al. Organic matter added to bareroot nursery beds influences soil properties and morphology of Fraxinus pennsylvanica and Quercus rubra seedlings[J]. New Forests,2006,31(2):293-303.
[34]Vejan P,Khadiran T,Abdullah R,et al. Controlled release fertilizer:a review on developments,applications and potential in agriculture[J]. Journal of Controlled Release,2021,339(10):321-334.
[35]Villordon A Q,Ginzberg I,Firon N. Root architecture and root and tuber crop productivity[J]. Trends in Plant Science,2014,19(7):419-425.
[36]Cheng S F,Zhou D X,Zhao Y. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development[J]. Plant Signaling & Behavior,2016,11(2):e1130198.
[37]Hussain H A,Men S N,Hussain S,et al. Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system[J]. Plants,2020,9(6):720.
[38]Qu L Y,Quoreshi A M,Koike T.Root growth characteristics,biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes[J]. Plant and Soil,2003,255(1):293-302.
[39]Ni M,Gao Z Z,Chen H,et al. Exponential fertilization regimes improved growth and nutrient status of Quercus nuttallii container seedlings[J]. Agronomy,2022,12(3):669.
[40]Hedwall P O,Gong P C,Ingerslev M,et al. Fertilization in northern forests-biological,economic and environmental constraints and possibilities[J]. Scandinavian Journal of Forest Research,2014,29(4):301-311.
[41]Duan M,Chang S X.Nitrogen fertilization improves the growth of lodgepole pine and white spruce seedlings under low salt stress through enhancing photosynthesis and plant nutrition[J]. Forest Ecology and Management,2017,404:197-204.
[42]Springer T L.Effect of nitrogen fertilization and residual nitrogen on biomass yield of switchgrass[J]. BioEnergy Research,2017,10(3):648-656.
[43]Villar-Salvador P,Peuelas J L,Nicolás-Peragón J L,et al. Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations?[J]. New Forests,2013,44(5):733-751.
[44]倪铭,高振洲,吴文,等. 不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响[J]. 南京林业大学学报(自然科学版),2021,45(4):107-113.
[45]Villar-Salvador P,Uscola M,Jacobs D F. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees[J]. New Forests,2015,46(5/6):813-839.
[46]Gibson S I. Plant sugar-response pathways. Part of a complex regulatory web[J]. Plant Physiology,2000,124(4):1532-1539.

相似文献/References:

[1]曲良谱,周霞,李霞,等.枫杨容器苗控根技术研究[J].江苏农业科学,2013,41(06):145.
 Qu Liangpu,et al.Study on root control technology for container seedlings of Pterocarya stenoptera[J].Jiangsu Agricultural Sciences,2013,41(5):145.
[2]龚睿,沈永宝,史锋厚.切根对豆梨容器苗生长的影响[J].江苏农业科学,2019,47(01):100.
 Gong Rui,et al.Effects of root cutting on growth of container seedlings of Pyrus calleryana Decne[J].Jiangsu Agricultural Sciences,2019,47(5):100.

备注/Memo

备注/Memo:
收稿日期:2023-05-05
基金项目:江西省林业局林业科技创新专项[编号:创新专项(2021)16号];江苏高校优势学科建设工程项目(编号:PAPD)。
作者简介:鞠昕萌(1999—),女,山东临沂人,硕士研究生,主要从事林木种苗方面的研究。E-mail:m15550865171@163.com。
通信作者:喻方圆,博士,教授,主要从事林木种苗研究。E-mail:fyyu@njfu.edu.cn。
更新日期/Last Update: 2024-03-05