[1]Akoh C C,Lee G C,Liaw Y C,et al. GDSL family of serine esterases/lipases[J]. Progress in Lipid Research,2004,43(6):534-552.
[2]Brick D J,Brumlik M J,Buckley J T,et al. A new family of lipolytic plant enzymes with members in rice,arabidopsis and maize[J]. FEBS Letters,1995,377(3):475-480.
[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.
[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.
[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.
[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.
[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.
[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.
[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.
[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.
[11]徐平丽,赵晋平,孟静静,等. 一种适宜拟南芥PCR检测的DNA提取方法[J]. 农业科学与技术:英文版,2010,11(3):41-42,155.
[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.
[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.
[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.
[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.
[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.
[1]郭瑾,薛永来,杜道林.植物激素调控拟南芥根系发育的研究进展[J].江苏农业科学,2014,42(05):7.
Guo Jin,et al.Research progress of phytohormones regulating root system development of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(03):7.
[2]刘广志,陈炳佑,侍福梅.MAP18参与了脱落酸调控的拟南芥气孔关闭及根生长[J].江苏农业科学,2015,43(11):55.
Liu Guangzhi,et al.MAP18 involved in stomatal closure and root growth of Arabidopsis thaliana regulated by abscisic acid[J].Jiangsu Agricultural Sciences,2015,43(03):55.
[3]王宏归,黄晨,姜雅,等.CONSTANS LIKE 7参与调控拟南芥的向地性以及侧根、子叶的发育[J].江苏农业科学,2015,43(12):48.
Wang Honggui,et al.Study on CONSTANS LIKE 7 involved in regulating gravitropism and development of side root and cotyledon in Arabidopsis[J].Jiangsu Agricultural Sciences,2015,43(03):48.
[4]李雪,邵铁梅,安胜军.1种简单方便的拟南芥发芽诱导新技术[J].江苏农业科学,2015,43(12):51.
LI Xue,et al.A simple and convenient technology for bud induction of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2015,43(03):51.
[5]姜上川,梅超,王小芳,等.PPR蛋白APPR6参与ABA调控拟南芥种子萌发与幼苗生长[J].江苏农业科学,2016,44(04):53.
Jiang Shangchuan,et al.PPR protein APPR6 involved in ABA regulation of seed germination and seedling growth in Arabidopsis[J].Jiangsu Agricultural Sciences,2016,44(03):53.
[6]王琳,孙庆玲,刘辉,等.拟南芥缺失突变体at14a的比较转录组分析[J].江苏农业科学,2016,44(04):70.
Wang Lin,et al.Comparative transcriptional analysis of mutant at14a of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2016,44(03):70.
[7]韩蕾,李俊林,苏彦华.拟南芥突变体kea的表型分析及对生长素的响应特征[J].江苏农业科学,2016,44(06):30.
Han Lei,et al.Phenotypic analysis of arabidopsis mutant kea and its response to exogenous auxin[J].Jiangsu Agricultural Sciences,2016,44(03):30.
[8]李静婷,赵旭耀,刘超凡,等.热胁迫对转TasHSP16.9拟南芥幼苗生长生理特性的影响[J].江苏农业科学,2016,44(10):113.
Li Jingting,et al.Effects of heat stress on growth and physiological indices of TasHSP16.9 transgenic Arabidopsis thaliana seedlings[J].Jiangsu Agricultural Sciences,2016,44(03):113.
[9]郝东利,杨顺瑛,黄亚楠,等.拟南芥铵转运蛋白AtAMT1.3的电生理功能[J].江苏农业科学,2017,45(08):36.
Hao Dongli,et al.Electrophysiological study on Arabidopsis ammonium transporter AtAMT1.3[J].Jiangsu Agricultural Sciences,2017,45(03):36.
[10]郭丽红,徐娅,郤秋霞,等.拟南芥热激因子AtHsfA1a在低温胁迫下对细胞程序性死亡中Caspase-3活性的影响[J].江苏农业科学,2017,45(21):24.
Guo Lihong,et al.Effects of heat shock factor AtHsfA1a on Caspase-3 enzyme activity during programmed cell death under low temperature stress in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2017,45(03):24.