[1]Song X L,Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton[J]. Seed Science Research,2007,17(4):243-251.
[2]Bolek Y,El-Zik K M,Pepper A E,et al. Mapping of Verticillium wilt resistance genes in cotton[J]. Plant Science,2005,168(6):1581-1590.
[3]Wang Y Q,Chen D J,Wang D M,et al. Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in colored cotton[J]. Plant Breeding,2004,123(5):454-459.
[4]Wang B,Brubaker C L,Summerell B A,et al. Local origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia[J]. Evolutionary Applications,2010,3(5/6):505-524.
[5]Pegg G F,Brady B L. Verticillium wilts[M]. New York:CABI Publishing,2002:552.
[6]郭香墨,范术丽,王红梅,等. 我国棉花育种技术的创新与成就[J]. 棉花学报,2007,19(5):323-330.
[7]James C.2011年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志,2012,32(1):1-14.
[8]李文静,陆宴辉,吴孔明,等. 绿盲蝽对棉蚜的捕食作用[C]//“创新驱动与现代植保”——中国植物保护学会第十一次全国会员代表大会暨2013年学术年会论文集,青岛:中国植物保护学会,2013:502.
[9]Wei Z M,Laby R J,Zumoff C H,et al. Harpin,elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science,1992,257:85-88.
[10]周庭辉,戴小枫. 棉花抗黄萎病生理与生化机制研究[J]. 分子植物育种,2006,4(4):593-600.
[11]He S Y,Huang H C,Collmer A. Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants[J]. Cell,1993,73(7):1255-1266.
[12]Bauer D W,Wei Z M,Beer S V,et al. Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis[J]. Molecular Plant-Microbe Interactions,1995,8(4):484-491.
[13]Preston G,Huang H C,He S Y,et al. The HrpZ proteins of Pseudomonas syringae pv. syringae,glycinea,and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean[J]. Molecular Plant-Microbe Interactions,1995,8(5):717-732.
[14]Wengelnik K,Marie C,Russel M,et al. Expression and localization of HrpA1,a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction[J]. Journal of Bacteriology,1996,178(4):1061-1069.
[15]Li P,Lu X Z,Shao M,et al. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco[J]. Science in China: Series C,Life Sciences,2004,47(5):461-469.
[16]Miao W G,Song C F,Wang Y,et al. HpaXm from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads for hypersensitive response[J]. Journal of Microbiology and Biotechnology,2010,20(1):54-62.
[17]闻伟刚,王金生. 水稻白叶枯病菌harpin基因的克隆与表达[J]. 植物病理学报,2001,31(4):295-300.
[18]Pavli O I,Kelaidi G I,Tampakaki A P,et al. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet[J]. PLoS One,2011,6(3):e17306.
[19]Peng J L,Bao Z L,Ren H Y,et al. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death[J]. Phytopathology,2004,94(10):1048-1055.
[20]Belbahri L,Boucher C,Candresse T,et al. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible[J]. The Plant Journal,2001,28(4):419-430.
[21]Sohn S I,Kim Y H,Kim B R,et al. Transgenic tobacco expressing the hrpNEP gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea[J]. Molecules and Cells,2007,24(2):232-239.
[22]Li R,Fan Y. Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein[J]. Science China: Life Sciences,1999,42(1):96-101.
[23]Borejsza W E,Kader A A,Norelli J L,et al. Effect of expressing hrpN in apple on resistance to Erwinia amylovora[J]. In Vitro Cellular and Developmental Biology:Animal,2000,34:1023-1033.
[24]Malnoy M,Venisse J S,Chevreau E. Expression of a bacterial effector,harpinN,causes increased resistance to fire blight in Pyruscommunis[J]. Tree Genet,2005,1(2):41-49.
[25]Fu M Q,Xu M Y,Zhou T,et al. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid[J]. Journal of Experimental Botany,2014,65(6):1439-1453.
[26]Miao W G,Wang J S. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against Verticillium dahliae Kleb[J]. Methods in Molecular Biology,2013,958:223-246.
[27]邵敏,李林,穆东升,等. Harpinxoo在水稻中表达提高对白叶枯病不同小种抗性[J]. 中国生物防治,2006,22(2):133-136.
[28]邵敏,肖姗姗,李林,等. 转hrf1基因水稻对稻瘟病多小种非专化的稳定抗性[J]. 中国水稻科学,2008,22(5):459-464.
[29]邵敏,王金生. 转hrfAxoo基因水稻对白叶枯病的抗性[J]. 南京农业大学学报,2004,27(4):36-40.
[30]Miao W G,Wang X B,Li M,et al. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism[J]. BMC Plant Biology,2010,10:67-78.
[31]缪卫国. 转hpa1Xoo基因棉花抗病虫防卫反应与全基因组转录谱分析及棉花角斑病菌 hpaXm基因的功能[D]. 南京:南京农业大学,2009.
[32]顾本康,马存. 中国棉花抗病品种[M]. 南京:江苏科学技术出版社,1996:140-141.
[33]陈大军,简桂良,李仁敬,等. 转天麻抗真菌蛋白基因彩色棉新品系抗枯黄萎病研究[J]. 分子植物育种,2003,1(5/6):673-676.
[34]Murray F R,Llewellyn D J,Peacock W J,et al. Isolation of the glucose oxidase gene from Talaromyces flavus and characterisation of its role in the biocontrol of Verticillium dahliae[J]. Current Genetics,1997,32(5):367-375.
[35]刘慧君,简桂良,邹亚飞,等. GO基因导入对棉花农艺性状及抗病性的影响[J]. 分子植物育种,2003,1(5/6):669-672.
[36]Wei Z M,Beer S V. Harpin from Erwinia amylovora induces plant disease resistance[J]. Acta Horticulturae,1996,411:223-225.
[37]Strobel N E,Ji C,Kuc J A,et al. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv.syringae 61 HrpZPss protein[J]. The Plant Journal,1996,9(4):431-439.
[38]Hahn M G. Microbial elicitors and their receptors in plants[J]. Annual Review of Phytopathology,1996,34:387-412.
[39]Carpenter C W. The verticillium wilt problem[J]. Phytopathology,1914,4:393.
[40]赵贵元,王凯辉,郭宝生,等. 国审抗枯黄萎病抗虫棉新品种冀杂1号选育研究[J]. 河北农业科学,2012,16(9):55-59.
[41]赵俊丽,张寒霜,王永强,等. 抗病 丰产棉花新品种——冀棉169[J]. 现代农村科技,2010(5):12.
[42]高艳平,王子胜,王巍,等. 辽河流域棉区抗黄萎病育种进展及新品种(系)简介[C]//中国棉花学会2014年年会论文汇编,2014:141-142.
[43]龙丽坤,李飞武,李葱葱,等. 复合性状转基因玉米外源蛋白的时空表达规律[J]. 江苏农业科学,2014,42(12):29-33.
[44]许奕,徐碧玉,胡伟,等. 盐胁迫下MaAQP1转基因拟南芥幼苗的生长和生理响应[J]. 江苏农业学报,2014,30(6):1279-1285.
[45]卢宝荣,夏辉. 转基因植物的环境生物安全:转基因逃逸及其潜在生态风险的研究和评价[J]. 生命科学,2011,23(2):186-194.
[46]周雪,王冀宁. 转基因食品安全监管的演化博弈分析[J]. 江苏农业科学,2014,42(10):463-466.
[47]王宇,沈文星. 国内外转基因作物发展状况比较分析[J]. 江苏农业科学,2014,42(6):6-9.
[48]罗丰,孔祥义,袁经天,等. 转基因作物安全研究进展及南繁转基因生物安全管理对策[J]. 分子植物育种,2011,9(5):648-655.
[1]陈天子,秦郁,张保龙.转基因棉花再生幼苗简易移栽方法[J].江苏农业科学,2013,41(11):87.
Chen Tianzi,et al.A simple method for transplanting of regenerated transgenic cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(11):87.
[2]方志翔,张莉,沈文静,等.抗黄萎病转基因棉花对灰巴蜗牛(Bradybaena ravida)的影响[J].江苏农业科学,2019,47(24):296.
Fang Zhixiang,et al.Effect of transgenic cotton with resistance to verticillium wilt on Bradybaena ravida[J].Jiangsu Agricultural Sciences,2019,47(11):296.
[3]马克鹤,张慧敏,陈全家,等.转GbHCT13、GbHCT15基因棉花的筛选鉴及农艺性状、产量性状和纤维品质分析[J].江苏农业科学,2024,52(22):69.
Ma Kehe,et al.Screening and identification of GbHCT13 and GbHCT15 transgenic cotton and analysis of their agronomic traits,yield characters and fiber quality[J].Jiangsu Agricultural Sciences,2024,52(11):69.