[1]Hynes R O. Integrins:bidirectional,allosteric signaling machines[J]. Cell,2002,110(6):673-687.
[2]Qin J,Vinogradova O,Plow E F. Integrin bidirectional signaling:a molecular view[J]. PLoS Biology,2004,2(6):726-729.
[3]Wegener K L,Partridge A W,Han J,et al. Structural basis of integrin activation by talin[J]. Cell,2007,128(1):171-182.
[4]Kumar M N,Hsieh Y F,Verslues P E. At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(33):10545-10550.
[5]Nick P. Microtubules,signalling and abiotic stress[J]. Plant Journal for Cell & Molecular Biology,2013,75(2):309-323.
[6]Schindler M,Meiners S,Cheresh D A. RGD-dependent linkage between plant cell wall and plasma membrane:consequences for growth[J]. Journal of Cell Biology,1989,108(5):1955-1965.
[7]Nagpal P,Quatrano R S. Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins[J]. Gene,1999,230(1):33-40.
[8]Lü B,Liang J S,Zhang J H,et al. AT14A mediates the cell wall-plasma membrane-cytoskeleton continuum in Arabidopsis thaliana cells[J]. Journal of Experimental Botany,2012,63(11):4061-4069.
[9]Velculescu V E,Zhang L,Zhou W,et al. Characterization of the yeast transcriptome[J]. Cell,1997,88(2):243-251.
[10]章琼,蒋高中,李冰. 水产动物对氨氮胁迫响应的转录组分析研究进展[J]. 江苏农业科学,2015,43(3):227-230.
[11]魏松红,刘志恒,纪明山,等. 基因芯片技术在植物病害中的应用[J]. 河南农业科学,2008(3):20-22.
[12]Knepper C,Savory E A,Day B. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion[J]. Plant Physiology,2011,156(1):286-300.
[13]He X J,Mu R L,Cao W H,et al. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.
[14]Havaux M,Eymery F,Porfirova S,et al. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[J].The Plant Cell,2005,17(12):3451-3469.
[15]Nakaminami K,Matsui A,Nakagami H A,et al. Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis[J]. Molecular & Cellular Proteomics,2014,13(12):3602-3611.
[16]Kouno T,Ezaki B. Multiple regulation of Arabidopsis AtGST11 gene expression by four transcription factors under abiotic stresses[J]. Physiologia Plantarum,2013,148(1):97-104.
[17]Yano R,Nakamura M,Yoneyama T,et al. Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis[J]. Plant Physiology,2005,138(2):837-846.
[1]奈婕菲,程玉祥.一个杨树GDSL基因组织表达的特性及其在拟南芥异源的表达[J].江苏农业科学,2014,42(03):16.
Nai Jiefei,et al.Tissue expression of a poplar GDSL gene and its heterologous expression analysis in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(04):16.
[2]郭瑾,薛永来,杜道林.植物激素调控拟南芥根系发育的研究进展[J].江苏农业科学,2014,42(05):7.
Guo Jin,et al.Research progress of phytohormones regulating root system development of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2014,42(04):7.
[3]刘广志,陈炳佑,侍福梅.MAP18参与了脱落酸调控的拟南芥气孔关闭及根生长[J].江苏农业科学,2015,43(11):55.
Liu Guangzhi,et al.MAP18 involved in stomatal closure and root growth of Arabidopsis thaliana regulated by abscisic acid[J].Jiangsu Agricultural Sciences,2015,43(04):55.
[4]王宏归,黄晨,姜雅,等.CONSTANS LIKE 7参与调控拟南芥的向地性以及侧根、子叶的发育[J].江苏农业科学,2015,43(12):48.
Wang Honggui,et al.Study on CONSTANS LIKE 7 involved in regulating gravitropism and development of side root and cotyledon in Arabidopsis[J].Jiangsu Agricultural Sciences,2015,43(04):48.
[5]李雪,邵铁梅,安胜军.1种简单方便的拟南芥发芽诱导新技术[J].江苏农业科学,2015,43(12):51.
LI Xue,et al.A simple and convenient technology for bud induction of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2015,43(04):51.
[6]姜上川,梅超,王小芳,等.PPR蛋白APPR6参与ABA调控拟南芥种子萌发与幼苗生长[J].江苏农业科学,2016,44(04):53.
Jiang Shangchuan,et al.PPR protein APPR6 involved in ABA regulation of seed germination and seedling growth in Arabidopsis[J].Jiangsu Agricultural Sciences,2016,44(04):53.
[7]韩蕾,李俊林,苏彦华.拟南芥突变体kea的表型分析及对生长素的响应特征[J].江苏农业科学,2016,44(06):30.
Han Lei,et al.Phenotypic analysis of arabidopsis mutant kea and its response to exogenous auxin[J].Jiangsu Agricultural Sciences,2016,44(04):30.
[8]李静婷,赵旭耀,刘超凡,等.热胁迫对转TasHSP16.9拟南芥幼苗生长生理特性的影响[J].江苏农业科学,2016,44(10):113.
Li Jingting,et al.Effects of heat stress on growth and physiological indices of TasHSP16.9 transgenic Arabidopsis thaliana seedlings[J].Jiangsu Agricultural Sciences,2016,44(04):113.
[9]郝东利,杨顺瑛,黄亚楠,等.拟南芥铵转运蛋白AtAMT1.3的电生理功能[J].江苏农业科学,2017,45(08):36.
Hao Dongli,et al.Electrophysiological study on Arabidopsis ammonium transporter AtAMT1.3[J].Jiangsu Agricultural Sciences,2017,45(04):36.
[10]郭丽红,徐娅,郤秋霞,等.拟南芥热激因子AtHsfA1a在低温胁迫下对细胞程序性死亡中Caspase-3活性的影响[J].江苏农业科学,2017,45(21):24.
Guo Lihong,et al.Effects of heat shock factor AtHsfA1a on Caspase-3 enzyme activity during programmed cell death under low temperature stress in Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2017,45(04):24.