|本期目录/Table of Contents|

[1]奚琦,许志茹,王琪,等.植物铜稳态相关miRNAs的研究进展[J].江苏农业科学,2017,45(09):5-10.
 Xi Qi,et al.Research progress on miRNAs related to copper homeostasis in plant[J].Jiangsu Agricultural Sciences,2017,45(09):5-10.
点击复制

植物铜稳态相关miRNAs的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年09期
页码:
5-10
栏目:
专论与综述
出版日期:
2017-05-05

文章信息/Info

Title:
Research progress on miRNAs related to copper homeostasis in plant
作者:
奚琦1 许志茹12 王琪1 曲春浦1 杨成君3 刘关君1
1.东北林业大学林木遗传育种国家重点实验室,黑龙江哈尔滨 150040; 2.东北林业大学生命科学学院,黑龙江哈尔滨 150040;
3.东北林业大学林学院,黑龙江哈尔滨 150040
Author(s):
Xi Qiet al
关键词:
铜稳态Cu-miRNAs铜胁迫研究进展
Keywords:
-
分类号:
Q754
DOI:
-
文献标志码:
A
摘要:
铜(Cu)是植物生长发育所必需的微量元素,参与光合作用、呼吸作用及木质素合成等多个生物学过程。铜离子具有氧化还原特性,低铜或者过量铜都会对植物造成伤害,因此植物在长期进化过程中产生了一套完整的铜稳态调控体系,其中miRNA在此体系中扮演着重要的角色。介绍了miR397、miR398、miR408、miR857、miR1444等5种 Cu-miRNAs,它们的靶基因编码了植物细胞中非常重要的4大类含铜蛋白——漆酶、超氧化物歧化酶、质体蓝素和多酚氧化酶。在铜胁迫条件下,miRNA通过调控靶基因的表达优化铜离子的分配,既保证了铜的正常供应,又避免了铜毒害。
Abstract:
-

参考文献/References:

[1]Yruela I. Copper in plants:acquisition,transport and interactions[J]. Functional Plant Biology,2009,36(5):409-430.
[2]Weber M B,Schat H,Ten Bookum-van der Maarel W M. The effect of copper toxicity on the contents of nitrogen compounds in Silene vulgaris(moench) garcke[J]. Plant and Soil,1991,133(1):101-109.
[3]Vinit-Dunand F,Epron D,Alaoui-Sossé B,et al. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants[J]. Plant Science,2002,163(1):53-58.
[4]Lombardi L,Sebastiani L. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science,2005,168(3):797-802.
[5]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[6]张红晓,张芬琴. 铜在植物细胞中的运输和分布[J]. 洛阳理工学院学报(自然科学版),2011,21(3):1-5.
[7]Zhang B,Stellwag E J,Pan X. Large-scale genome analysis reveals unique features of microRNAs[J]. Gene,2009,443(1/2):100-109.
[8]Lee R C,Feinbaum R L,Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
[9]Reinhart B J,Slack F J,Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
[10]Llave C,Kasschau K D,Rector M A,et al. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell,2002,14(7):1605-1619.
[11]Mette M F,Van Der Winden J,Matzke M,et al. Short RNAs can identify new candidate transposable element families in Arabidopsis[J]. Plant Physiology,2002,130(1):6-9.
[12]Park W,Li J,Song R,et al. CARPEL FACTORY,a Dicer homolog,and HEN1,a novel protein,act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology,2002,12(17):1484-1495.
[13]Reinhart B J,Weinstein E G,Rhoades M W,et al. MicroRNAs in plants[J]. Genes & Development,2002,16(13):1616-1626.
[14]Lee Y,Kim M,Han J,et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ[J]. The EMBO Journal,2004,23(20):4051-4060.
[15]Kurihara Y,Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(34):12753-12758.
[16]Voinnet O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell,2009,136(4):669-687.
[17]Chen X,Liu J,Cheng Y,et al. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower[J]. Development,2002,129(5):1085-1094.
[18]Bollman K M,Aukerman M J,Park M Y,et al. HASTY,the Arabidopsis ortholog of exportin 5/MSN5,regulates phase change and morphogenesis[J]. Development,2003,130(8):1493-1504.
[19]Schwarz D S,Hutvágner G,Du T,et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell,2003,115(2):199-208.
[20]Vaucheret H. Plant ARGONAUTES[J]. Trends in Plant Science,2008,13(7):350-358.
[21]Mallory A,Vaucheret H. Form,function,and regulation of ARGONAUTE proteins[J]. The Plant Cell,2010,22(12):3879-3889.
[22]Bartel B,Bartel D P. MicroRNAs:at the root of plant development?[J]. Plant Physiology,2003,132(2):709-717.
[23]Burkhead J L,Reynolds K A G,Abdel-Ghany S E,et al. Copper homeostasis[J]. New Phytologist,2009,182(4):799-816.
[24]Liang G,Ai Q,Yu D. Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis[J]. Scientific Reports,2015,5:11813.
[25]Gielen H,Remans T,Vangronsveld J,et al. Toxicity responses of Cu and Cd:the involvement of miRNAs and the transcription factor SPL7[J]. BMC Plant Biology,2016,16(1):145.
[26]Paul S,Datta S K,Datta K. miRNA regulation of nutrient homeostasis in plants[J]. Frontiers in Plant Science,2015,6:232.
[27]Pilon M. The Copper microRNAs[J]. The New Phytologist,2017,213(3):1030-1035.
[28]Liang M,Davis E,Gardner D,et al. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis[J]. Planta,2006,224(5):1185-1196.
[29]Berthet S,Demont-Caulet N,Pollet B,et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell,2011,23(3):1124-1137.
[30]Abdel-Ghany S E,Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(23):15932-15945.
[31]Wang C Y,Zhang S,Yu Y,et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis[J]. Plant Biotechnology Journal,2014,12(8):1132-1142.
[32]Zhang Y C,Yu Y,Wang C Y,et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology,2013,31(9):848-852.
[33]Lu S,Sun Y H,Chiang V L. Stress-responsive microRNAs in Populus[J]. The Plant Journal,2008,55(1):131-151.
[34]Lu S,Yang C,Chiang V L. Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa[J]. Journal of Integrative Plant Biology,2011,53(11):879-891.
[35]Yamasaki H,Abdel-Ghany S E,Cohu C M,et al. Regulation of Copper homeostasis by micro-RNA in Arabidopsis[J]. The Journal of Biological Chemistry,2007,282(22):16369-16378.
[36]Bonnet E,Wuyts J,Rouzé P,et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(31):11511-11516.
[37]Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Molecular Biology,2008,67(4):403-417.
[38]Sunkar R,Kapoor A,Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. The Plant Cell,2006,18(8):2051-2065.
[39]Lu Y,Feng Z,Bian L,et al. miR398 regulation in rice of the responses to abiotic and bioticstresses depends on CSD1 and CSD2 expression[J]. Functional Plant Biology,2011,38(1):44-53.
[40]鲁玉柱,封振,边黎颖,等. 过表达抗miR398的OsmCSD2基因提高水稻的重金属抗性[J]. 植物生理学报,2011,47(11):1064-1068.
[41]Schuetz M,Benske A,Smith R A,et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem[J]. Plant Physiology,2014,166(2):798-807.
[42]Weigel M,Varotto C,Pesaresi P,et al. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana[J]. The Journal of Biological Chemistry,2003,278(33):31286-31289.
[43]Sunkar R. MicroRNAs with macro-effects on plant stress responses[J]. Seminars in Cell & Developmental Biology,2010,21(8):805-811.
[44]Cuperus J T,Fahlgren N,Carrington J C. Evolution and functional diversification of MIRNA genes[J]. Plant Cell,2011,23(2):431-442.
[45]Zhang H,Li L. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis[J]. The Plant Journal,2013,74(1):98-109.
[46]Turlapati P V,Kim K W,Davin L B,et al. The laccase multigene family in Arabidopsis thaliana:towards addressing the mystery of their gene function(s)[J]. Planta,2011,233(3):439-470.
[47]Zhao Y,Lin S,Qiu Z,et al. MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in arabidopsis[J]. Plant Physiology,2015,169(4):2539-2552.
[48]gyi. Mechanism of operation of micro-RNAs involved in plant viral infection and fruitdevelopment[D]. Budapest,Hungary:Faculty of Science Biology,Etvs Loránd University,2014:1-11.
[49]Geng M,Li H,Jin C,et al. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings[J]. Planta,2014,239(2):341-356.
[50]Zhu Y Y,Zeng H Q,Dong C X,et al. microRNA expression profiles associated with phosphorus deficiency in white lupin(lupinus albus L.)[J]. Plant Science,2010,178(1):23-29.
[51]Zhang Y,Yin Z,Feng X. Differential expression of microRNAs between 21A genetic male sterile line and its maintainer line in cotton (Gossypium hirsutum L.)[J]. J Plant Studies,2014,3(1):13-27.
[52]Tran L T,Constabel C P. The polyphenol oxidase gene family in poplar:phylogeny,differential[KG*2/3]expression[KG*2/3]and[KG*2/3]identification[KG*2/3]of[KG*2/3]a novel,vacuolar isoform[J]. Planta,2011,234(4):799-813.
[53]Ravet K,Danford F L,Dihle A,et al. Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves[J]. Plant Physiology,2011,157(3):1300-1312.
[54]崔秀娜,袁丽钗,苏晓娟,等. miR1444a参与毛果杨对锌胁迫的响应[J]. 中国科学:生命科学,2012,42(10):850-860.
[55]Quinn J M,Barraco P,Eriksson M,et al. Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element[J]. The Journal of Biological Chemistry,2000,275(9):6080-6089.
[56]Yamasaki H,Hayashi M,Fukazawa M,et al. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell,2009,21(1):347-361.
[57]冷翔鹏,孙欣,房经贵,等. 波尔多液作用机理及其在果树生产上的应用与相应药害研究进展[J]. 江苏农业科学,2012,40(2):97-99.

相似文献/References:

[1]唐孟泉,黄佳欢,陈瑾元,等.植物的铜稳态研究综述[J].江苏农业科学,2019,47(10):305.
 Tang Mengquan,et al.Research progress on copper homeostasis in plants: a review[J].Jiangsu Agricultural Sciences,2019,47(09):305.

备注/Memo

备注/Memo:
收稿日期:2016-11-07
基金项目:国家自然科学基金面上项目(编号:31470664、31370662)。
作者简介:奚琦(1992—),女,黑龙江哈尔滨人,硕士研究生,主要从事林木抗性遗传育种研究。E-mail:994504861@qq.com。
通信作者:刘关君,博士,教授,主要从事林木遗传育种学研究。E-mail:liuguanjun2003@126.com。
更新日期/Last Update: 2017-05-05