|本期目录/Table of Contents|

[1]刘远,周买春.遥感反演植被叶面积指数的不确定性来源综述[J].江苏农业科学,2017,45(12):12-19.
 Liu Yuan,et al.Uncertain sources of remote sensing inversion of vegetation leaf area index:an overview[J].Jiangsu Agricultural Sciences,2017,45(12):12-19.
点击复制

遥感反演植被叶面积指数的不确定性来源综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年12期
页码:
12-19
栏目:
专论与综述
出版日期:
2017-06-20

文章信息/Info

Title:
Uncertain sources of remote sensing inversion of vegetation leaf area index:an overview
作者:
刘远 周买春
华南农业大学水利与土木工程学院,广东广州 510642
Author(s):
Liu Yuanet al
关键词:
遥感叶面积指数不确定性反演集聚效应
Keywords:
-
分类号:
S127;TP79
DOI:
-
文献标志码:
A
摘要:
叶面积指数(LAI)是表征冠层结构的关键参数,影响植被光合、呼吸、蒸腾、降水截留、能量交换等诸多生态过程。目前利用不同的卫星遥感数据和反演方法,已经生成了多种全球LAI产品。然而,遥感反演LAI存在着主要由输入数据和反演算法引起的不确定性。本文从地表反射率的光谱特征和大气校正、土地覆盖分类、数据时空分辨率等方面论述了LAI反演输入数据的不确定性;从经验或半经验模型、物理模型以及模型对植被集聚效应方面论述了LAI反演模型的不确定性;最后总结了评价遥感反演LAI不确定性的方法,以及控制、减少不确定性的新途径。
Abstract:
-

参考文献/References:

[1]柳艺博,居为民,陈镜明,等. 2000—2010年中国森林叶面积指数时空变化特征[J]. 科学通报,2012,57(16):1435-1445.
[2]Watson D J. Comparative physiological studies on the growth of field crops. Ⅰ. Variation in net assimilation rate and leaf area between species and varieties,and within and between years[J]. Annals of Botany,1947,11(1):41-76.
[3]Chen J M,Black T A. Defining leaf-area index for non-flat leaves[J]. Plant Cell and Environment,1992,15(4):421-429.
[4]Masson V,Champeaux J L,Chauvin F. Ecoclimap:a global database of land surface parameters at 1 km resolution[J]. Meteorological Applications,2005,12(1):29-32.
[5]Los S O,Collatz G J,Sellers P J,et al. A global 9-yr biophysical land surface dataset from NOAA AVHRR data[J]. Journal of Hydrometeorology,2000,1(2):183-199.
[6]Ganguly S,Schull M A,Samanta A A,et al. Generating vegetation leaf area index earth system data record from multiple sensors. Part 1:theory[J]. Remote Sensing of Environment,2008,112(12):4333-4343.
[7]Baret F,Hagolle O,Geiger B,et al. LAI,fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1:principles of the algorithm[J]. Remote Sensing of Environment,2007,110(3):275-286.
[8]Deng F,Chen J M,Plummer S,et al. Algorithm for global leaf area index retrieval using satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2219-2229.
[9]Myneni R B,Hoffman S,Knyaxikhin Y,et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment,2002,83(1/2):214-231.
[10]Bacour C,Baret F,Beal D,et al. Neural network estimation of LAI,fAPAR,fCover and LAI×Cab,from top of canopy MERIS reflectance data:principles and validation[J]. Remote Sensing of Environment,2006,105(4):313-325.
[11]Hu J N,Tan B,Shabanov N,et al. Performance of the MISR LAI and FPAR algorithm:a case study in Africa[J]. Remote Sensing of Environment,2003,88(3):324-340.
[12]Hu J N,Su Y,Tan B,et al. Analysis of the MISR LA/FPAR product for spatial and temporal coverage,accuracy and consistency[J]. Remote Sensing of Environment,2007,107(1/2):334-347.
[13]Baret F,Weiss M,Lacaze R,et al. GEOV1:LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1:principles of development and production[J]. Remote Sensing of Environment,2013,137(10):299-309.
[14]Liu Y,Liu R G,Chen J M,et al. Expanding MISR LAI products to high temporal resolution with MODIS observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(50):3915-3927.
[15]Xiao Z,Liang S,Wang J,et al. Use of general regression neural networks for generating the GLASS leaf area index product from Time-Series MODIS surface reflectance[J]. IEEE Transaction on Geoscience and Remote Sensing,2014,52(1):209-223.
[16]Pisek J,Chen J M,Deng F. Assessment of a global leaf area index product from SPOT-4 VEGETATION data over selected sites in Canada[J]. Canadian Journal of Remote Sensing,2007,33(4):341-356.
[17]Liu R,Chen J M,Liu J,et al. Application of a new leaf area index algorithm to Chinas landmass using MODIS data for carbon cycle research[J]. Journal of Environmental Management,2007,85(3):649-658.
[18]Li X,Ju W,Zhou Y,et al. Retrieving leaf area index of forests in red soil hilly region using remote sensing data[C]. Bellingham:Second International Conference on Earth Observation for Global Changes,2009.
[19]Garrigues S,Lacaze R,Baret F,et al. Validation and intercomparison of global leaf area index products derived from remote sensing data[J]. Journal of Geophysical Research Biogeosciences,2008,113(G2):1-20.
[20]向阳,肖志强,梁顺林,等. GLASS叶面积指数产品验证[J]. 遥感学报,2014,18(3):573-596.
[21]Hill M J,Senarath U,Lee A,et al. Assessment of the MODIS LAI product for Australian ecosystems[J]. Remote Sensing of Environment,2006,101(4):495-518.
[22]刘洋,刘荣高,陈镜明,等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报,2013,15(5):734-743.
[23]Combal B,Baret F,Weiss M,et al. Retrieval of canopy biophysical variables from bidirectional reflectance:using prior information to solve the ill-posed inverse problem[J]. Remote Sensing of Environment,2003,84(1):1-15.
[24]Knyazikhin Y,Martonchik J V,Myneni R B,et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data[J]. Journal of Geophysical Research,1998,103(D24):32257-32275.
[25]Tan B,Hu J N,Zhang P,et al. Validation of moderate resolution imaging spectroradiometer leaf area index product in croplands of alpilles,France[J]. Journal of Geophysical Research,2005,110(D1):1-15.
[26]刘远,周买春. AVHRR、SPOT-VGT和MODIS 3种NDVI遥感数据在韩江流域的对比分析[J]. 华南农业大学学报,2015,36(1):106-112.
[27]Brown M E,Pinzon J E,Didan K,et al. Evaluation of the consistency of long-term NDVI time series derived from AVHRR,SPOT-Vegetation,SeaWiFS,MODIS,and Landsat ETM+ sensors[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1787-1793.
[28]Fensholt R,Rasmussen K,Nielsen T T. Evaluation of earth observation based long term vegetation trends-Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS,Terra MODIS and SPOT VGT data[J]. Remote Sensing of Environment,2009,113(9):1886-1898.
[29]刘良明,梁益同,马慧云,等. MODIS和AVHRR植被指数关系的研究[J]. 武汉大学学报(信息科学版),2004,29(4):307-310.
[30]严晓瑜,董文杰,何勇. 不同传感器数据在若尔盖湿地植被变化监测应用中的适宜性分析[J]. 遥感技术与应用,2008,23(3):300-304,图版Ⅵ.
[31]宋富强,康慕谊,杨朋,等. 陕北地区GIMMS、SPOT-VGT和MODIS归一化植被指数的差异分析[J]. 北京林业大学学报,2010,32(4):72-80.
[32]邢著荣,冯幼贵,李万明,等. 高光谱遥感叶面积指数(LAI)反演研究现状[J]. 测绘科学,2010,35(增刊1):162-164.
[33]谭炳香,李增元,陈尔学,等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究,2008,21(增刊1):105-111.
[34]宋开山,张柏,王宗明,等. 基于人工神经网络的大豆叶面积高光谱反演研究[J]. 中国农业科学,2006,39(6):1138-1145.
[35]Gong P,Pu R,Biging G S,et al. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1355-1362.
[36]Lee K S,Cohen W B,Kennedy R E,et al. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes[J]. Remote Sensing of Environment,2004,91(3/4):508-520.
[37]Pu R,Gong P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sensing of Environment,2004,91(2):212-224.
[38]王秀珍,黄敬峰,李云梅,等. 水稻叶面积指数的高光谱遥感估算模型[J]. 遥感学报,2004,8(1):81-88.
[39]吴朝阳,牛铮. 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进[J]. 植物学通报,2008,25(6):714-721.
[40]顾哲衍,张金池,林杰,等. 大气校正模型对阔叶林叶面积指数遥感估算的影响[J]. 华南农业大学学报,2014,35(3):100-104,110.
[41]朱忠敏. 主被动光学遥感相结合的对地观测大气校正方法研究[D]. 武汉:武汉大学,2010.
[42]韩晓庆,苏艺,李静,等. 海岸带地区SPOT卫星影像大气校正方法比较及精度验证[J]. 地理研究,2012,31(11):2007-2016.
[43]Kaufman Y J,Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[J]. International Journal of Remote Sensing,1988,9(8):1357-1381.
[44]Tanre D,Deschamps P Y,Devaux C,et al. Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data [J]. Journal of Geophysical Research,1988,93(D12):15955-15964.
[45]Hall F G,Strebel D E,Nickeson J E,et al. Radiometric rectification:toward a common radiometric response among multidate,multisensor images[J]. Remote Sensing of Environment,1991,35(1):11-27.
[46]Richter R. A spatially adaptive fast atmospheric correction algorithm[J]. International Journal of Remote Sensing,1996,17(6):1201-1214.
[47]Liang S L,Fang H L,Chen M Z. Atmospheric correction of landsat ETM+ land surface imagery. Part Ⅰ:methods[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2490-2498.
[48]Kneizys F X,Shettle E P,Abreu L W,et al. Users guide to LOWTRAN 7 [R]. Massachusetts:US Air Force Geophysics Laboratory Hanscom AFB,1988.
[49]Berk A,Bernstein L S,Robertson D C. MODTRAN:A moderate resolution model for LOWTRAN 7 [R].Massachusetts:US Air Force Geophysics Laboratory Hanscom AFB,1987.
[50]Tanre D,Deroo C,Duhaut P,et al. Technical note description of a computer code to simulate the satellite signal in the solar spectrum:the 5S code [J]. International Journal of Remote Sensing,1990,11(4):659-668.
[51]Vermote E,Tanre D,Deuze J L,et al. Second simulation of the satellite signal in the solar spectrum,6S:an overview[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.
[52]Goetz A F H,Boardman J W,Kindel B C,et al. Atmospheric corrections:on deriving surface reflectance from hyperspectral imagers:SPIE 3118,San Diego[C]//Optical Science,Engineering and Instrumentation. International Society for Optics and Photonics,1997:14-22.
[53]Clark R N,Swayze G A,Heidebrecht K B,et al. Calibration of surface reflectance of terrestrial imaging spectrometry data:comparison of methods[C]//Proceedings of Summaries of the 5th Annual JPL Airborne Earth Science Workshop. Pasadena:Publication,1995:41-42.
[54]Goetz A H,Heidebrecht K B,Kindel B,et al. Using ground spectral irradiance for model correction of AVIRIS data[C]//Proceedings of Summaries of the Seventh Annual JPL Airborne Earth Science Workshop. California:Publication,1999:159-168.
[55]王正兴,索玉霞,林昕,等. AVHRR全球时间序列研究进展:PAL-GIMMS-LTDR[J]. 资源科学,2008,30(8):1252-1260.
[56]Rahman H,Dedieu G S. A simplified method for the atmospheric correction of satellite measurements in the solar spectrum[J]. International Journal of Remote Sensing,1994,15(1):123-143.
[57]Privette J L,Myneni R B,Knyaxzikhin Y,et al. Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari[J]. Remote Sensing of Environment,2002,83(1/2):232-243.
[58]陈新芳,陈镜明,安树青,等. 不同大气校正方法对森林叶面积指数遥感估算影响的比较[J]. 生态学杂志,2006,25(7):769-773.
[59]Loveland T R,Reed B C,Brown J F,et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J]. International Journal of Remote Sensing,2000,21(6/7):1303-1330.
[60]Hansen M C,Defries R S,Townshend J R,et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing,2000,21(6/7):1331-1364.
[61]Bartholome E,Belward A S. GLC2000:a new approach to global land cover mapping from earth observation data[J]. International Journal of Remote Sensing,2005,26(9):1959-1977.
[62]Friedl M A,Mciver D K,Hodges J,et al. Global land cover mapping from MODIS:algorithms and early results[J]. Remote Sensing of Environment,2002,83(1/2):287-302.
[63]Mccallum I,Obersteiner M,Nilsson S,et al. A spatial comparison of four satellite derived 1km global land cover datasets[J]. International Journal of Applied Earth Observation and Geoinformation,2006,8(4):246-255.
[64]Giri C,Zhu Z L,Reed B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets[J]. Remote Sensing of Environment,2005,94(1):123-132.
[65]吴文斌,杨鹏,张莉,等. 四类全球土地覆盖数据在中国区域的精度评价[J]. 农业工程学报,2009,25(12):167-173,封2.
[66]Hansen M C,Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land covers products[J]. International Journal of Remote Sensing,2000,21(6/7):1365-1373.
[67]刘远,周买春. AVHRR、SPOT-VGT和MODIS 3种NDVI遥感数据在韩江流域的对比分析[J]. 华南农业大学学报,2015(1):106-112.
[68]Ran Y H,Li X,Lu L. Evaluation of four remote sensing based land cover products over China[J]. International Journal of Remote Sensing,2010,31(2):391-401.
[69]Ran Y H,Li X,Lu L,et al. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory[J]. International Journal of Geographical Information Science,2012,26(1):169-191.
[70]Gonsamo A,Chen J M. Evaluation of the GLC2000 and NALC2005 land cover products for LAI retrieval over Canada[J]. Canadian Journal of Remote Sensing,2011,37(3):302-313.
[71]李显风,居为民,陈姝,等. 地表覆盖分类数据对区域森林叶面积指数反演的影响[J]. 遥感学报,2010,14(5):974-989.
[72]Fang H L,Li W J,Myneni R B. The impact of potential land cover misclassification on MODIS leaf area index (LAI) estimation:a statistical perspective[J]. Remote Sensing,2013,5(2):830-844.
[73]陈洪萍,贾根锁,冯锦明,等. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展,2014,29(1):56-67.
[74]Jacquemoud S,Baret F. PROSPECT—a model of leaf optical-properties spectra[J]. Remote Sensing of Environment,1990,34(2):75-91.
[75]Dawson T P,Curran P J,Plummer S E. Liberty-modeling the effects of leaf biochemical concentration on reflectance spectra[J]. Remote Sensing of Environment,1998,65(1):50-60.
[76]Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL model [J]. Remote Sensing of Environment,1984,16(2):125-141.
[77]Chen J M,Leblanc S G. A four-scale bidirectional reflectance model based on canopy architecture[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1316-1337.
[78]Chen J M,Pavlic G,Brown L,et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote Sensing of Environment,2002,80(1):165-184.
[79]李新. 陆地表层系统模拟和观测的不确定性及其控制[J]. 中国科学:地球科学,2013,43(11):1735-1742.
[80]吴小丹,肖青,闻建光,等. 遥感数据产品真实性检验不确定性分析研究进展[J]. 遥感学报,2014,18(5):1011-1023.
[81]姜志伟. 区域冬小麦估产的遥感数据同化技术研究[D]. 北京:中国农业科学院,2012.
[82]Chen J M,Menges C H,Leblance S G. Global mapping of foliage clumping index using multi-angular satellite data[J]. Remote Sensing of Environment,2005,97(4):447-457.
[83]朱高龙. 植被叶面积指数与叶片聚集度系数遥感反演方法研究[D]. 南京:南京大学,2011.
[84]Fang H L,Wei S S,Jiang C Y,et al. Theoretical uncertainty analysis of global MODIS,CYCLOPES,and GLOBCARBON LAI products using a triple collocation method[J]. Remote Sensing of Environment,2012,124(124):610-621.

相似文献/References:

[1]陈鹤群,雷少刚.TerraSAR-X土壤水分反演研究进展[J].江苏农业科学,2013,41(04):327.
[2]付立东,隋鑫.不同取秧量与穴距对机插水稻产量的影响[J].江苏农业科学,2014,42(12):70.
 Fu Lidong,et al.Effects of different seedling quantity and hole distance on yield of mechanized transplanting rice[J].Jiangsu Agricultural Sciences,2014,42(12):70.
[3]王丽爱,谭昌伟,马昌,等.农情信息遥感监测预报模型构建算法研究进展[J].江苏农业科学,2013,41(11):1.
 Wang Liai,et al.Research progress of remote sensing forecast modeling algorithms on crop information[J].Jiangsu Agricultural Sciences,2013,41(12):1.
[4]马红军,张玲丽,李文甲.不同水肥处理下温室番茄干物质积累动态模型[J].江苏农业科学,2016,44(08):254.
 Ma Hongjun,et al.Study on dynamic models of dry matter production of tomato in greenhouse under different water and fertilizer treatment[J].Jiangsu Agricultural Sciences,2016,44(12):254.
[5]王丹,付立东.氮肥不同施入量对水稻新品种盐粳939产量的影响[J].江苏农业科学,2014,42(05):73.
 Wang Dan,et al.Effect of different amounts of nitrogen fertilizer on yield of new rice cultivar “Yanjing 939”[J].Jiangsu Agricultural Sciences,2014,42(12):73.
[6]胡法龙,郑桂萍,于洪明,等.寒地水稻不同群体叶面积指数、干物质量与产量的关系[J].江苏农业科学,2014,42(05):93.
 Hu Falong,et al.Relationship between leaf area index,dry matter weight and yield of different rice groups in cold region[J].Jiangsu Agricultural Sciences,2014,42(12):93.
[7]王伟义,崔必波,孙扣忠,等.两系杂交水稻两优363制种的施氮量效应[J].江苏农业科学,2014,42(05):101.
 Wang Weiyi,et al.Effect of nitrogen levels on seed production of two-line hybrid rice “Liangyou 363”[J].Jiangsu Agricultural Sciences,2014,42(12):101.
[8]张秀美,王宏,张广仁.不同负载量对苹果“丽嘎啦/MM106”冠层光合能力及品质的影响[J].江苏农业科学,2015,43(10):218.
 Zhang Xiumei,et al.Effects of capacity on canopy photosynthesis and quality of apple “Ligala/MM106”[J].Jiangsu Agricultural Sciences,2015,43(12):218.
[9]丁从慧,申双和,陶苏林,等.玉米根-冠及叶片水分利用效率对土壤水分的响应[J].江苏农业科学,2015,43(10):108.
 Ding Conghui,et al.Response of maize root-shoot and leaf water use efficiency to soil moisture[J].Jiangsu Agricultural Sciences,2015,43(12):108.
[10]石姣姣,江晓东,邱思齐.昼夜不同增温处理对小麦生长发育和产量的影响[J].江苏农业科学,2015,43(01):82.
 Shi Jiaojiao,et al.Effects of different day/night warming on growth and yield of winter wheat under free air temperature increased (FATI) facility[J].Jiangsu Agricultural Sciences,2015,43(12):82.
[11]李章成,李源洪,魏来,等.基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性[J].江苏农业科学,2014,42(01):284.
 Li Zhangcheng,et al.Study on correlation between vegetation index and leaf area index and yield of rice based on SPOT5 image analysis[J].Jiangsu Agricultural Sciences,2014,42(12):284.
[12]康婷婷,居为民,李秉柏.水稻叶面积指数遥感反演方法对比分析[J].江苏农业科学,2015,43(05):366.
 Kang Tingting,et al.Contrastive analysis of remote sensing inversion method of rice leaf area index[J].Jiangsu Agricultural Sciences,2015,43(12):366.

备注/Memo

备注/Memo:
收稿日期:2016-03-10
基金项目:国家自然科学基金(编号:41171029);广东省水利科技创新项目(编号:2009-42)。
作者简介:刘远(1979—),男,广东中山人,博士,副教授,主要从事水文预报和地理信息系统研究。E-mail:lyuan@scau.edu.cn。
通信作者:周买春,教授,博士生导师,主要从事水文学及水资源研究。E-mail:mczhou@scau.edu.cn。
更新日期/Last Update: 2017-06-20