|本期目录/Table of Contents|

[1]李红娟,杨颖辉.基于混沌多宇宙算法的苹果表面缺陷检测研究[J].江苏农业科学,2017,45(15):202-205.
 Li Hongjuan,et al.Apple surface defect detection based on chaotic multi universe algorithm[J].Jiangsu Agricultural Sciences,2017,45(15):202-205.
点击复制

基于混沌多宇宙算法的苹果表面缺陷检测研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年15期
页码:
202-205
栏目:
农业工程与信息技术
出版日期:
2017-08-05

文章信息/Info

Title:
Apple surface defect detection based on chaotic multi universe algorithm
作者:
李红娟 杨颖辉
河南牧业经济学院信息与电子工程学院,河南郑州 450045
Author(s):
Li Hongjuanet al
关键词:
混沌多宇宙苹果表面缺陷检测仿真试验检测准确率
Keywords:
-
分类号:
TP391
DOI:
-
文献标志码:
A
摘要:
采用混沌多宇宙算法,提高苹果表面缺陷检测的质量。首先建立单宇宙、多宇宙结构,多个单宇宙群组成超单宇宙群;接着超单宇宙群信息交流通过自适应策略选择宇宙个体,Logistic映射对选中的宇宙个体进行混沌优化;然后采用改进OTSU算法进行苹果缺陷区域目标分割,分割区域内像素纹理信息作为苹果提取特征;最后给出了算法流程。试验仿真显示,该算法对苹果表面缺陷检测效果清晰,各种缺陷检测准确率比较高。
Abstract:
-

参考文献/References:

[1]程荣花,马飞,石梦. 基于颜色特征的苹果表面质量检测系统设计与实现[J]. 辽宁农业科学,2014(3):22-24.
[2]Leemans V,Destain M F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering,2004,61(1):83-89.
[3]马晓丹,刘刚,周薇,等. 基于量子遗传模糊神经网络的苹果果实识别[J]. 农业机械学报,2013,44(12):227-232,251.
[4]Linker R,Cohen O,Naor A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture,2012,81(1):45-57.
[5]Keresztes J C,Goodarzi M,Saeys W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques[J]. Food Control,2016,66(1):215-226.
[6]刘晓红,曲志坚,曹雁锋,等. 基于自适应机制的多宇宙并行量子衍生进化算法[J]. 计算机应用,2015,35(2):369-373.
[7]Yu F,Li P,Gu K,et al. Research progress of multi-scroll chaotic oscillators based on current-mode devices[J]. Optik-International Journal for Light and Electron Optics,2016,127(13):5486-5490.
[8]Zhu Q B,Guan J Y,Huang M,et al. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique[J]. Postharvest Biology and Technology,2016,114(4):86-94.
[9]Lu Y Z,Li R,Lu R F. Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples[J]. Postharvest Biology and Technology,2016,117(7):89-93.
[10]Ferrari C,Foca G,Calvini R,et al. Fast exploration and classification of large hyperspectral image datasets for early bruise detection on apples[J]. Chemometrics and Intelligent Laboratory Systems,2015,146(8):108-119.
[11]Zhang B H,Huang W Q,Gong L,et al. Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier[J]. Journal of Food Engineering,2015,146(2):143-151.
[12]Li C Y,Heinemann P,Sherry R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection[J]. Sensors and Actuators B-Chemical,2007,16(1):301-310.
[13]张保华,黄文倩,李江波,等. 基于亮度校正和AdaBoost的苹果缺陷在线检测[J]. 农业机械学报,2014,45(6):221-226.
[14]李江波. 脐橙表面缺陷的快速检测方法研究[D]. 杭州:浙江大学,2012.

相似文献/References:

[1]王洪涛,荆园园.基于特征点混沌算法的农产品图像数字水印实现[J].江苏农业科学,2017,45(04):179.
 Wang Hongtao,et al.Realization of agriculture products image watermarking based on feature and chaos algorithm[J].Jiangsu Agricultural Sciences,2017,45(15):179.

备注/Memo

备注/Memo:
收稿日期:2016-08-19
基金项目:河南省教育厅高等学校重点科研项目(编号:15A520076)。
作者简介:李红娟(1981—),女,山西平陆人,硕士,讲师,主要研究方向为网络管理与安全。E-mail:llaiyang2008@foxmail.com。
更新日期/Last Update: 2017-08-05