[1]程荣花,马飞,石梦. 基于颜色特征的苹果表面质量检测系统设计与实现[J]. 辽宁农业科学,2014(3):22-24.
[2]Leemans V,Destain M F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering,2004,61(1):83-89.
[3]马晓丹,刘刚,周薇,等. 基于量子遗传模糊神经网络的苹果果实识别[J]. 农业机械学报,2013,44(12):227-232,251.
[4]Linker R,Cohen O,Naor A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture,2012,81(1):45-57.
[5]Keresztes J C,Goodarzi M,Saeys W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques[J]. Food Control,2016,66(1):215-226.
[6]刘晓红,曲志坚,曹雁锋,等. 基于自适应机制的多宇宙并行量子衍生进化算法[J]. 计算机应用,2015,35(2):369-373.
[7]Yu F,Li P,Gu K,et al. Research progress of multi-scroll chaotic oscillators based on current-mode devices[J]. Optik-International Journal for Light and Electron Optics,2016,127(13):5486-5490.
[8]Zhu Q B,Guan J Y,Huang M,et al. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique[J]. Postharvest Biology and Technology,2016,114(4):86-94.
[9]Lu Y Z,Li R,Lu R F. Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples[J]. Postharvest Biology and Technology,2016,117(7):89-93.
[10]Ferrari C,Foca G,Calvini R,et al. Fast exploration and classification of large hyperspectral image datasets for early bruise detection on apples[J]. Chemometrics and Intelligent Laboratory Systems,2015,146(8):108-119.
[11]Zhang B H,Huang W Q,Gong L,et al. Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier[J]. Journal of Food Engineering,2015,146(2):143-151.
[12]Li C Y,Heinemann P,Sherry R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection[J]. Sensors and Actuators B-Chemical,2007,16(1):301-310.
[13]张保华,黄文倩,李江波,等. 基于亮度校正和AdaBoost的苹果缺陷在线检测[J]. 农业机械学报,2014,45(6):221-226.
[14]李江波. 脐橙表面缺陷的快速检测方法研究[D]. 杭州:浙江大学,2012.
[1]王洪涛,荆园园.基于特征点混沌算法的农产品图像数字水印实现[J].江苏农业科学,2017,45(04):179.
Wang Hongtao,et al.Realization of agriculture products image watermarking based on feature and chaos algorithm[J].Jiangsu Agricultural Sciences,2017,45(15):179.