[1]Morton J,Davis M W,Jorgensen E M,et al. Induction and repair of zinc-nuclease-targeted double-strand breaks in somatic cells[J]. Proceedings of the National Academy of Sciences,2006,103(44):16370-16375. [2]Durai S,Mani M,Kandavelou K,et al. Zinc finger:nucleases custom-designed molecular scissors for genome engineering of plant and mammalian cells[J]. Nucleic Acids Research,2005,33(18):5978-5990. [3]Miller J C,Tan S Y,Qiao G J,et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology,2011,29(2):143-148. [4]Lillestol R,Redder P,Garrett R A,et al. A putative viral defence mechansm in archaeal cells[J]. Archaea,2006,2(1):59-72. [5]Brouns S J J,Jore M M,Lundgren M,et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science,2008,321(5891):960-964. [6]Ishino Y,Shinagawa H,Makino K,et al. Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. Journal of Bacteriology,1987,169(12):5429-5433. [7]Chrisyian M,Cermak T,Doyle E L,et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics,2010,186(2):757-761. [8]Carroll D,Morton J J,Beumer K J,et al. Design,construction and in vitro testing of zinc finger nuclease[J]. Nature Protocols,2006,1(3):1329-1341. [9]Grissa I,Vergnaud G,Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformat,2007,8(1):172. [10]Grissa I,Vergnaud G,Pourcel C. CRISPR finder:a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic Acids Research,2007,35:52-57. [11]Jansen R,van Embden J D A,Gaastra W,et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular microbiology,2002,43(6):1565-1575. [12]Wei C X,Liu J Y,Yu Z S,et al. TALEN or Cas9-rapid,efficient and specific choices for genome modifications[J]. Journal of Genetics and Genomics,2013,40(6):281-289. [13]Godde J S,Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes:evidence of horizontal transfer among prokaryotes[J]. Journal of Molecular Evolution,2006,62(6):718-729. [14]Haft D H,Selengut J,Mongodin E F,et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas9 subtypes exist in prokaryotic genomes[J]. PLoS Computational Biology,2005,1(6):e60. [15]Makarova KS,Aravind L,Wolf Y I,et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR/Cas9 systems[J]. Biology Direct,2011,6(1):38. [16]Garneau J E,Dupuis M ,Villion M,et al. The CRISPR/Cas9 bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468(7320):67-71. [17]Cong L,Ran F A,Cox D,et al. Multiple genome engineering using CRISPR/Cas9 systems[J]. Science,2013,339(6121):819-923. [18]Qi L S,Larson M H,Gilbert L A,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell,2013,152(5):1173-1183. [19]Wang H Y,Yang H,Shivalila C S,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas9 mediated genome engineering[J]. Cell,2013,153(4):910-918. [20]Terns M P,Terns R M. CRISPR-based adaptive immune systems[J]. Current Opinion in Microbiology,2011,14(3):321-327. [21]Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821. [22]Shan Q W,Gao C X. Research progress of genome editingand derivative technologies in plants[J]. Hereditas,2015,37(10):953-973. [23]Xie K B,Yang Y N. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant,2013,6(6):1975-1983. [24]Mao Y F,Zhang H,Xu N F,et al. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Molecular Plant,2013,6(6):2008-2011. [25]Feng Z Y,Zhang B T,Ding W N,et al. Efficient genome editing in plants using a CRISPR/Cas9 system[J]. Cell Research,2013,23(10):1229-1232. [26]Ma X L,Zhang Q Y,Zhu Q L,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284. [27]Engler C,Kandzia R,Marillonnet S. A one pot,one step,precision cloning method with high throughput capability[J]. PLoS One,2008,3(11):e3647. [28]Gibson D G,Young L,Chuang R Y,et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods,2009,6(5):343-345. [29]Orel N,Kyryk A,Puchta H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome[J]. The Plant Journal,2003,35(5):604-612. [30]Frampton R A,Pitman A R,Fineran P C. Advances in bacteriophage-mediated control of plant pathogens[J]. International Journal of Microbiology,2012(6079):1-11. [31]Jiang W Z,Zhou H B,Bi H H,et al. Demonstration of CRISPR/Cas9/ sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Research,2013,41(20):e188. [32]Wang Y P,Cheng X,Shan Q W,et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology,2014,32(9):947-951. [33]Sharma S,Upadhyay S K. Functional characterization of expressed sequence tags of bread wheat (Triticum aestivum) and analysis of crispr binding sites for targeted genome editing[J]. American Journal of Bioinformatics Research,2014,4(1):11-22. [34]Liang Z,Zhang K,Chen K L,et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas9 system[J]. Journal of Genetics and Genomics,2014,41(2):63-68. [35]Xing H L,Dong L,Wang Z P,et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology,2014,14(1):327. [36]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.
[1]赵盼盼,王丽,袁园园,等.提高CRISPR/Cas9系统靶向编辑效率方法的研究进展[J].江苏农业科学,2017,45(01):12.
Zhao Panpan,et al.Research progress on methods of enhancing CRISPR/Cas9 system target editing effects[J].Jiangsu Agricultural Sciences,2017,45(18):12.
[2]李莉,任红艳,毕延震,等.基因编辑技术的新进展及展望[J].江苏农业科学,2018,46(23):5.
Li Li,et al.New progress and prospect of gene editing technology[J].Jiangsu Agricultural Sciences,2018,46(18):5.
[3]齐世杰,赵静娟,郑怀国.基于ESI的全球作物生物育种领域研究前沿分析[J].江苏农业科学,2021,49(19):9.
Qi Shijie,et al.Research frontier analysis of global crop biological breeding based on ESI[J].Jiangsu Agricultural Sciences,2021,49(18):9.
[4]杨海峰,甘晓雪,薄高峰,等.利用CRISPR/Cas9系统编辑银腺杨84K LAZY基因[J].江苏农业科学,2022,50(18):258.
Yang Haifeng,et al.LAZY gene editing of Populus alba ×P. glandulosa cv. 84K by CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2022,50(18):258.
[5]朱宗财,王志军,高能,等.CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述[J].江苏农业科学,2024,52(3):1.
Zhu Zongcai,et al.Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review[J].Jiangsu Agricultural Sciences,2024,52(18):1.