|本期目录/Table of Contents|

[1]王亚琦,孙子淇,郑峥,等.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(05):6-12.
 Wang Yaqi,et al.Status and prospect of crop molecular marker assisted selection breeding[J].Jiangsu Agricultural Sciences,2018,46(05):6-12.
点击复制

作物分子标记辅助选择育种的现状与展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年05期
页码:
6-12
栏目:
专论与综述
出版日期:
2018-03-05

文章信息/Info

Title:
Status and prospect of crop molecular marker assisted selection breeding
作者:
王亚琦1 孙子淇2 郑峥2 黄冰艳2 董文召2 汤丰收2 张新友12
1.河南科技大学农学院,河南洛阳 471000; 2.河南省农业科学院经济作物研究所/农业部黄淮海油料作物
重点实验室/河南省油料作物遗传改良重点实验室,河南郑州 450002
Author(s):
Wang Yaqiet al
关键词:
作物育种分子标记辅助选择全基因组选择基础应用展望
Keywords:
-
分类号:
S33
DOI:
-
文献标志码:
A
摘要:
分子标记辅助选择育种可以通过精准选择目标性状提高育种效率,加快育种进程。分子标记辅助选择已在主要农作物育种中广泛应用,全基因组选择正逐步成为研究热点,有望推动分子标记辅助选择育种技术的更快发展。综述了分子标记辅助育种的基础及在农作物中的应用进展,全基因组选择的原理、方法、优势以及全基因组选择在植物育种方面的应用,并对作物分子选择育种作出了展望。
Abstract:
-

参考文献/References:

[1]Xu Y B,Lu Y L,Xie C X,et al. Whole-genome strategies for marker-assisted plant breeding[J]. Molecular Breeding,2012,29(4):833-854.
[2]Hill C B,Taylor J D,Edwards J,et al. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment[J]. Plant Physiology,2013,162(3):1266-1281.
[3]Tyrka M,Perovic D,Wardynska A,et al. A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding[J]. Journal of Applied Genetics,2008,49(2):127-134.
[4]Cavanagh C R,Taylor J,Larroque O,et al. Sponge and dough bread making:genetic and phenotypic relationships with wheat quality traits[J]. Theoretical and Applied Genetics,2010,121(5):815-828.
[5]Tester M,Langridge P. Breeding technologies to increase crop production in a changing world[J]. Science,2010,327(5967):818-822.
[6]Khedikar Y P,Gowda M C,Sarvamangala C,et al. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut Arachis hypogaea L.[J]. Theoretical and Applied Genetics,2010,121(5):971-984.
[7]Tanksley S D,Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theoretical and Applied Genetics,1996,92(2):191-203.
[8]Moncada M D P,Tovar E,Montoya J C,et al. A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield,plant height,and bean size[J]. Tree Genetics & Genomes,2015,12(1):1-17.
[9]Lee S,Freewalt K R,Mchale L K,et al. A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K[J]. Molecular Breeding,2015,35(2):58.
[10]Yu J M,Holland J B,Mcmullen M D,et al. Genetic design and statistical power of nested association mapping in maize[J]. Genetics,2008,178(1):539-551.
[11]Kump K L,Bradbury P J,Wisser R J,et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association[J]. Nature Genetic,2011,43(2):163-168.
[12]Bergelson J,Roux F. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana[J]. Nature Reviews Genetics,2010,11(12):867-879.
[13]Kover P X,Valdar W,Trakalo J,et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana[J]. PLoS Genetics,2009,5(7):e1000551.
[14]Atwell S,Huang Y S,Vilhjalmsson B J,et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J]. Nature,2010,465(7298):627-631.
[15]Zhao K Y,Tung C W,Eizenga G C,et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications,2011,2(1):1-10.
[16]Morris G P,Ramu P,Deshpande S P,et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(2):453-458.
[17]于志远,王伟威,魏崃,等. 利用关联分析方法挖掘自然群体中大豆油分和蛋白质含量相关SSR标记[J]. 大豆科学,2015,34(6):977-981.
[18]Spindel J,Wright M,Chen C,et al. Bridging the genotyping gap:using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations[J]. Theoretical and Applied Genetics,2013,126(11):2699-2716.
[19]Zhou X J,Xia Y L,Ren X P,et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing(ddRADseq)[J]. BMC Genomics,2014,15(351):1-14.
[20]Liu L Z,Qu C M,Wittkop B,et al. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.[J]. PLoS One,2013,8(12):e83052.
[21]Kim S,Plagnol V,Hu T T,et al. Recombination and linkage disequilibrium in Arabidopsis thaliana[J]. Nature Genetics,2007,39(9):1151-1155.
[22]Gore M A,Chia J M,Elshire R J,et al. A first-generation haplotype map of maize[J]. Science,2009,326(5956):1115-1117.
[23]Chia J M,Song C,Bradbury P J,et al. Maize HapMap2 identifies extant variation from a genome in flux[J]. Nature Genetics,2012,44(7):803-807.
[24]Huang X,Wei X,Sang T,et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics,2010,42(11):961-967.
[25]吴金华,张西平,胡言光,等. 小麦抗白粉病相关基因GST克隆与表达[J]. 西北植物学报,2013,33(1):34-38.
[26]刘新颖,王晓杰,薛杰,等. 小麦钙调素新亚型TaCaM5的克隆及表达分析[J]. 作物学报,2010,36(6):953-960.
[27]王坤,王海燕,刘大群. 叶锈菌与“TcLr19”小麦互作体系中PR1基因的克隆及分析[J]. 河北农业大学学报,2012,35(2):1-6.
[28]Wang C R,Sheng C,Yu S B. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice[J]. Theoretical and Applied Genetics,2011,122(5):905-913.
[29]Fu D L,Uauy C,Assaf D,et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science Express,2009,323(5919):1357-1360.
[30]宁丽华,陈亭亭,刘怀华,等. 高直链淀粉玉米amylose-extender基因功能标记的开发及应用[J]. 分子植物育种,2011,9(2):185-189.
[31]Lopez Y,Nadaf H L,Smith O D,et al. Isolation and characterization of the Δ12-fatty acid desaturase in peanut(Arachis hypogaea L.)and search for polymorphisms for the high oleate trait in Spanish marker-type lines[J]. Theoretical and Applied Genetics,2000,10(17):1131-1138.
[32]Chen Z,Wang M L,Barkley N A,et al. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection[J]. Plant Molecular Biology Reporter,2010,28(3):542-548.
[33]Jaccoud D,Peng K,Feinstein D,et al. Diversity arrays:a solid state technology for sequence information independent genotyping[J]. Nucl Acids Res,2001,29(4):e25.
[34]Akbari M,Wenzl P,Caig V,et al. Diversity arrays technology(DArT)for high-throughput profiling of the hexaploid wheat genome[J]. Theoretical and Applied Genetics,2006,113(8):1409-1420.
[35]Mace E S,Xia L,Jordan D R,et al. DArT markers:diversity analyses and mapping in Sorghum bicolor[J]. BMC Genomics,2008,9(1):26.
[36]Mace E S,Rami J F,Bouchet S,et al. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers[J]. BMC Plant Biology,2009,9(1):13.
[37]Wenzl P,Li H,Carling J,et al. A high-density consensus map of barley linking DArT markers to SSR and RFLP loci and agronomic traits[J]. BMC Genomics,2006,7(1):206-228.
[38]Wand N,Fang L C,Xin H P,et al. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing[J]. BMC Plant Biology,2012,12(1):148.
[39]Xiao J Z,Xia Y L,Ren X P,et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing(ddRADseq)[J]. BMC Genomics,2014,15(1):351.
[40]Erena A,Patrick F B,Scott D H,et al. Genome wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes[J]. Theoretical and Applied Genetics,2014,127(4):791-807.
[41]Su Z Q,Jin S J,Lu Y E,et al. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat[J]. Molecular Breeding,2016,36(2):15-25.
[42]Myles S,Peiffer J,Brown P J,et al. Association mapping:critical considerations shift from genotyping to experimental design[J]. Plant Cell,2009,21(8):2194-2202.
[43]Lu Y,Zhang S H,Shah T,et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought toleranceinmaize[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(45):19585-19590.
[44]Li X P,Zhou Z J,Ding J Q,et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize[J]. Front Plant Sci,2016,7:833.
[45]Shamsudin N A,Swamy B P,Ratnam W,et al. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar,MR219[J]. BMC Genetics,2016,17(1):30.
[46]Salameh A,Buerstmayr M,Steiner B,et al. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance,yield and quality traits[J]. Molecular Breeding,2011,28(4):485-494.
[47]Yang L Q,Wang W,Peng Y,et al. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes[J]. Molecular Breeding,2013,31(4):767-775.
[48]Hao X M,Li X W,Yang X H,et al. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize[J]. Molecular Breeding,2014,34(2):739-748.
[49]Peng J H,Fahima T,Roder M S,et al. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F-2 generation in wild emmer wheat[J]. New Phytologist,2000,146(1):141-154.
[50]李进波,王春连,夏明元,等. 分子标记辅助选择Xa23基因培育杂交稻抗白叶枯病恢复系[J]. 作物学报,2006,32(10):1423-1429.
[51]Vida G,Gál M,Uhrin A,et al. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance[J]. Euphytica,2009,170(1/2):67-76.
[52]董娜,张亚娟,张军刚,等. 分子标记辅助小麦抗白粉病基因Pm21和Pm13聚合育种[J]. 麦类作物学报,2014,34(12):1639-1644.
[53]Singh A K,Singh V K,Singh A,et al. Introgression of multiple disease resistance into a maintainer of Basmati rice CMS line by marker assisted backcross breeding[J]. Euphytica,2015,203(1):97-107.
[54]Zhao X R,Tan G Q,Xing Y E,et al. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut[J]. Molecular Breeding,2012,30(2):1077-1088.
[55]朱映东,时亚琼,周锋利,等. 分子标记辅助选育香型巨胚水稻[J]. 上海师范大学学报(自然科学版),2013,42(6):623-628.
[56]Zhou P H,Tan Y F,He Y Q,et al. Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice,by molecular marker-assisted selection[J]. Theoretical and Applied Genetics,2003,106(2):326-331.
[57]Barloy D,Lemoine J,Abelard P,et al. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat[J]. Molecular Breeding,2007,20(1):31-40.
[58]Varshney R K,Manish K P,PasupuletiJanila,et al. Marker assisted introgression of a QTL region to improve rustresistance in three elite and popular varieties of peanut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics,2014,127(8):1771-1781.
[59]Chu Y,Wu C L,Holbrook C C,et al. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut[J]. The Plant Genome,2011,4(2):110-117.
[60]Edwards M,Johnson L. Proceedings of symposium on analysis of molecular marker data[M]. Corvallis:American Society of Horticultural Science and Crop Science Society of America,1994:33-40.
[61]Stam P. Proceedings of the 9th meeting of EUCARPIA section on biometrics in plant breeding (1994) centre for plant breeding and reproduction research[M]. Wageningen:the Netherland,1995:32-44.
[62]Peleman J D,vander V J. Breeding by design[J]. Trends in Plant Science,2003,8(7):330-334.
[63]van Berloo R,Stam P. Simultaneous marker-assisted selection for multiple traits in autogamous crops[J]. Theoretical and Applied Genetics,2001,102(6):1107-1112.
[64]Bernardo R. Molecular markers and selection for complex traits in plants:learning from the last 20 years[J]. Crop Science,2008,48(5):1649-1664.
[65]Meuwissen T H,Hayes B J,Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics,2001,157(4):1819-1829.
[66]吴永升,邵俊明,周瑞阳,等. 植物数量性状全基因组选择研究进展[J]. 西南农业学报,2012,25(4):1510-1514.
[67]Rutkoski J E,Heffner E L,Sorrells M E. Genomic selection for durable stem rust resistance in wheat[J]. Euphytica,2011,179(1):161-173.
[68]Wong C K,Bernardo R. Genomewide selection in oil palm:increasing selection gain per unit time and cost with small populations[J]. Theoretical and Applied Genetics,2008,116(6):815-824.
[69]Lorenzana R E,Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations[J]. Theoretical and Applied Genetics,2009,120(1):151-161.
[70]VanRaden P M. Genomic measures of relationship and inbreeding[J]. Interbull Bulletin,2007,37:33-36.
[71]VanRaden P M,Van Tassell C P,Wiggans G R,et al. Invited review:reliability of genomic predictions for North American Holstein bulls[J]. Dairy Science,2008,92(1):16-24.
[72]Hayes B J,Bowman P J,Chamberlain A J,et al. Invited review:genomic selection in dairy cattle:progress and challenges[J]. Journal of Dairy Science,2009,92(2):433-443.
[73]Daetwyler H D,Villanueva B,Woolliams J A. Accuracy of predicting the genetic risk of disease using a genome-wide approach[J]. PLoS One,2008,3(10):e3395.
[74]Bernardo R,Yu Y. Prospects for genome-wide selection for quantitative traits in maize[J]. Crop Science,2007,47(3):1082-1090.
[75]Lorenzana R E,Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations[J]. Theoretical and Applied Genetics,2009,120(1):151-161.
[76]Heffner E L,Jannink J L,Sorrells M. Genomic selection accuracy using multifamily prediction models in a wheat breeding program[J]. The Plant Genome,2011,4:65-75.
[77]de los Campos G,Naya H,Gianola D,et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree[J]. Genetics,2009,182(1):375-385.
[78]Crossa J,de los Campos G,Perez P,et al. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers[J]. Genetics,2010,186(2):713-724.
[79]Pérez P,de los Campos G,Crossa J,et al. Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian Linear Regression Package in R[J]. The Plant Genome,2010,3(2):106-116.
[80]Pérez-Rpdríquez P,Gianola D,González-Camacho J M,et al. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat[J]. Genes Genomes Genet,2012,2(12):1595-1605.
[81]Ornella L,Sukhwinder-Singh S,Perez P,et al. Genomic prediction of genetic values for resistance to wheat rusts[J]. The Plant Genome,2012,5(3):136-148.
[82]Windhausen V S,Atlin G N,Crossa J,et al. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments[J]. Genes Genomes Genet,2012,2(11):1427-1436.
[83]Zhang J P,Song Q J,Cregan P B,et al. Genome-wide association study,genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max)[J]. Theoretical and Applied Genetics,2016,129(1):117-130.
[84]Arruda M P,Lipka A E,Brown P J,et al. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat(Triticum aestivum L.)[J]. Molecular Breeding,2016,36(7):84.
[85]Flint-Garcia S,Thornsberry J M,Buckler E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology,2003,54(4):357-374.
[86]Hayes B J,Bowman P J,Chamberlain A J,et al. Genomic selection in dairy cattle:progress and challenges[J]. Journal of Dairy Science,2009,92(2):433-443.
[87]Zhang X,Pérez-Rodríguez P,Semagn K,et al. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs[J]. Heredity,2015,114(3):291-299.
[88]Spindel J,Begum H,Akdemir D,et al. Genomic selection and association mapping in rice (Oryza sativa):effect of trait genetic architecture,training population composition,marker number and statistical model on accuracy of rice genomic selection in elite,tropical rice breeding lines[J]. PLoS Genetics,2015,11(2):e1004982.

相似文献/References:

[1]余玲,李爱宏,潘存红,等.分子标记辅助选择培育抗病优质晚粳稻品种扬粳806[J].江苏农业科学,2014,42(08):75.
 Yu Ling,et al.Breeding of late japonica rice cultivar “Yangjing 806” with high quality and disease resistance by molecular marker-assisted selection[J].Jiangsu Agricultural Sciences,2014,42(05):75.
[2]吴昊,陈涛,姚姝,等.分子标记辅助选择技术及其在水稻定向改良上的应用研究进展[J].江苏农业科学,2014,42(02):22.
 Wu Hao,et al.Research progress of marker-assisted selection techniques and its application in directional improvement of rice[J].Jiangsu Agricultural Sciences,2014,42(05):22.
[3]韩义胜,符策强,朱红林,等.利用分子标记辅助选择对龙特浦B米质和白叶枯病抗性的改良[J].江苏农业科学,2014,42(07):69.
 Han Yisheng,et al.Improvement on rice quality and bacterial blight resistance of rice cultivar “Longtepu B” by molecular marker assisted selection[J].Jiangsu Agricultural Sciences,2014,42(05):69.
[4]杨杰,仲维功,王军,等.优质食味粳稻新品种苏垦118的选育与利用[J].江苏农业科学,2017,45(21):79.
 Yang Jie,et al.Breeding and utilization of a new japonica rice cultivar “Suken 118” with good eating quality[J].Jiangsu Agricultural Sciences,2017,45(05):79.
[5]李梦臣,冯志明,崔傲,等.抗咪唑啉酮类除草剂基因ALS627N改良粳稻品种除草剂抗性研究[J].江苏农业科学,2022,50(18):263.
 Li Mengchen,et al.Improvement of japonica rice resistance to herbicides through introducing imidazolinone herbicide-resistant gene ALS627N[J].Jiangsu Agricultural Sciences,2022,50(05):263.
[6]李彬,李旭红.“十三五”以来江苏省农业科技创新布局研究[J].江苏农业科学,2023,51(19):252.
 Li Bin,et al.Study on layout of agricultural science and technology innovation in Jiangsu Province since the 13th Five-Year Plan[J].Jiangsu Agricultural Sciences,2023,51(05):252.
[7]何鸟飞,赵绪涛,李开祥,等.分子标记辅助选择在油菜育种中的应用现状与展望[J].江苏农业科学,2024,52(1):10.
 He Niaofei,et al.Application situation and prospect of molecular marker-assisted selection in rapeseed breeding[J].Jiangsu Agricultural Sciences,2024,52(05):10.

备注/Memo

备注/Memo:
收稿日期:2016-11-03
基金项目:河南省重大科技专项(编号:141100110600);国家花生产业技术体系建设专项(编号:CARS-14);河南省现代农业产业技术体系建设专项(编号:S2012-5)。
作者简介:王亚琦(1990—),女,河南济源人,硕士研究生,研究方向为作物遗传育种。E-mail:2335738351@qq.com。
通信作者:张新友,博士,研究员,长期从事花生育种工作。E-mail:haasz@126.com。
更新日期/Last Update: 2018-03-05