[1]李莉,毕延震,华再东,等. 基因编辑技术及其在畜牧业中的应用研究进展[J]. 基因组学与应用生物学,2016,35(12):3410-3418.
[2]Karginov F V,Hannon G J. The CRISPR system:small RNA-guided defense in bacteria and archaea[J]. Molecular Cell,2010,37(1):7-19.
[3]Wiedenheft B,Sternberg S H,Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature,2012,482(7385):331-338.
[4]Wang X,Huang X,Fang X,et al. CRISPR-Cas9 system as a versatile tool for genome engineering in human cells[J]. Molecular Therapy Nucleic Acids,2016,5(11):e388.
[5]Nan P,Han W,Li Y,et al. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus,the only genetically tractable genus of crenarchaea[J]. Science China(Life Sciences),2017,60(4):1-16.
[6]Yang L,Güell M,Niu D,et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science,2015,350(6264):1101-1104.
[7]Pattanayak V,Lin S,Guilinger J P,et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nature Biotechnology,2013,31(9):839-843.
[8]Ran F A,Hsu P D,Lin C Y,et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell,2013,154(6):1380-1389.
[9]Kleinstiver B P,Prew M S,Tsai S Q,et al. Engineered CRISPR-Cas9 nucleases with altered specificities[J]. Nature,2015,523(7561):481-485.
[10]Kleinstiver B P,Pattanayak V,Prew M S,et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature 2016,529(7587):490-495.
[11]Mali P,Aach J,Stranges P B,et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology,2013,31(9):833-838.
[12]Guilinger J P,Thompson D B,Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology,2014,32(6):577-582.
[13]Tsai S Q,Wyvekens N,Khayter C,et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nature Biotechnology,2014,32(6):569-576.
[14]Wyvekens N,Topkar V V,Khayter C,et al. Dimeric CRISPR RNA-guided foki-dcas9 nucleases directed by truncated gRNAs for highly specific genome editing[J]. Human Gene Therapy,2015,26(7):425-431.
[15]Nakade S,Yamamoto T,Sakuma T. Cas9,Cpf1 and C2c1/2/3―Whats next?[J]. Bioengineered,2017,8(3):265-273.
[16]Haeussler M,Concordet J P. Genome editing with CRISPR-Cas9:can it get any better?[J]. Journal of Genetics and Genomics,2016,43(5):239-250.
[17]Zetsche B,Gootenberg J S,Abudayyeh O O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell,2015,163(3):759-771.
[18]Kim Y,Cheong S A,Lee J G,et al. Generation of knockout mice by Cpf1-mediated gene targeting[J]. Nature Biotechnology,2016,34(8):808-810.
[19]Hur J K,Kim K,Been K W,et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins[J]. Nature Biotechnology,2016,34(8):807-808.
[20]Fu Y,Sander J D,Reyon D,et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology,2014,32(2):279-284.
[21]Nowak C M,Lawson S,Zerez M,et al. Guide RNA engineering for versatile Cas9 functionality[J]. Nucleic Acids Research,2016,44(20):9555-9564.
[22]Liu X,Homma A,Sayadi J,et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system[J]. Scientific Reports,2016(6):19675.
[23]Xu X,Duan D,Chen S J. CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability:from physical mechanism to off-target assessment[J]. Scientific Reports,2017,7(1):143.
[24]Ablain J,Durand E M,Yang S,et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish[J]. Developmental Cell,2015,32(6):756-764.
[25]Miller J B,Zhang S,Kos P,et al. Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA[J]. Angewandte Chemie,2017,129(4):1079-1083.
[26]Yan Q,Xu K,Xing J,et al. Multiplex CRISPR/Cas9-based genome engineering enhanced by drosha-mediated sgRNA-shRNA structure[J]. Scientific Reports,2016(6):38970.
[27]OConnell M R,Oakes B L,Sternberg S H,et al. Programmable RNA recognition and cleavage by CRISPR/Cas9[J]. Nature,2014,516(7530):263-266.
[28]Shmakov S,Abudayyeh O O,Makarova K S,et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell,2015,60(3):385-397.
[29]Abudayyeh O O,Gootenberg J S,Konermann S,et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):aaf5573.
[30]Lada A G,Dhar A,Boissy R J,et al. AID/APOBEC cytosine deaminase induces genome-wide kataegis[J]. Biology Direct,2012,7:47.
[31]Komor A C,Kim Y B,Packer M S,et al. Programable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-424.
[32]Nishida K,Arazoe T,Yachie N,et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science,2016,353(6305):aaf8729.
[33]Yang L,Briggs A W,Chew W L,et al. Engineering and optimising deaminase fusions for genome editing[J]. Nature Communications,2016,7:13330.
[34]Zheng Y,Lorenzo C,Beal P A. DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA[J]. Nucleic Acids Research,2017,45(6):3369-3377.
[35]Liang P,Xu Y,Zhang X,et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein & Cell,2015,6(5):363-372.
[36]Sara R.First CRISPR clinical trial gets green light from US panel[EB/OL]. (2016-06-22)[2017-07-26]. https://www.nature.com/news/first-crispr-clinical-trial-gets-green-light-from-us-panel-1.20137.
[37]Ma H,Marti-Gutierrez N,Park S W,et al. Correction of a pathogenic gene mutation in human embryos[J]. Nature,2017,548(7668):413-419.
[38]Gao F,Shen X Z,Jiang F,et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nature biotechnology,2016,34(7):768-773.
[39]Time for the data to speak[EB/OL]. (2017-08-02)[2017-08-23]. https://www.nature.com/articles/nbt.3938?foxtrotcallback=true.
[40]Makarova K S,Wolf Y I,van der Oost J,et al. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements[J]. Biology Direct,2009,4:29.
[41]Olovnikov I,Chan K,Sachidanandam R,et al. Bacterial argonaute samples the transcriptome to identify foreign DNA[J]. Molecular cell,2013,51(5):594-605.
[42]Swarts D C,Jore M M,Westra E R,et al. DNA-guided DNA interference by a prokaryotic Argonaute[J]. Nature,2014,507(7491):258-261.
[43]Swarts D C,Hegge J W,Hinojo I,et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA[J]. Nucleic acids research,2015,43(10):5120-5129.
[44]Burgess S,Cheng L,Gu F,et al. Questions about NgAgo[J]. Protein Cell,2016,7(12):913-915.
[45]Lee S H,Turchiano G,Ata H,et al. Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute[J]. Nature Biotechnology,2017,35(1):17-18.
[46]Javidi-Parsijani P,Niu G,Davis M,et al. No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells[J]. Plos One,2017,12(5):e0177444.
[47]Qi J,Dong Z,Shi Y,et al. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish[J]. Cell Research,2016,26(12):1349-1352.
[48]Sunghyeok Y,Taegeun B,Kyoungmin K,et al. DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute[EB/OL]. (2017-01-20)[2017-07-26]. https://www.biorxiv.org/content/early/2017/01/20/101923.
[49]Xu S,Cao S,Zou B,et al. An alternative novel tool for DNA editing without target sequence limitation:the structure-guided nuclease[J]. Genome Biology,2016,17(1):186.
[50]Bentin T,Larsen H J,Nielsen P E. Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid[J]. Biochemistry,2003,42(47):13987-13995.
[51]Komiyama M. Cut-and-paste of DNA using an artificial restriction DNA cutter[J]. International Journal of Molecular Sciences,2013,14(2):3343-3357.
[52]Bahal R,McNeer N A,Quijano E,et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery[J]. Nature Communications,2016,7:13304.
[53]Suzuki T,Imada T,Nishigaki N,et al. Cleavage of target DNA promotes sequence conversion with a tailed duplex[J]. Biological & Pharmaceutical Bulletin,2016,39(8):1392-1395.
[54]赵盼盼,王丽,袁园园,等. 提高CRISPR/Cas9系统靶向编辑效率方法的研究进展[J]. 江苏农业科学,2017,45(1):12-15.
[1]徐继法,徐艳,赵吉强,等.CRISPR/Cas9系统及其在单子叶植物中的应用[J].江苏农业科学,2017,45(18):21.
Xu Jifa,et al.CRISPR/Cas9 system and its application in monocot:a review[J].Jiangsu Agricultural Sciences,2017,45(23):21.
[2]齐世杰,赵静娟,郑怀国.基于ESI的全球作物生物育种领域研究前沿分析[J].江苏农业科学,2021,49(19):9.
Qi Shijie,et al.Research frontier analysis of global crop biological breeding based on ESI[J].Jiangsu Agricultural Sciences,2021,49(23):9.
[3]朱宗财,王志军,高能,等.CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述[J].江苏农业科学,2024,52(3):1.
Zhu Zongcai,et al.Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review[J].Jiangsu Agricultural Sciences,2024,52(23):1.