[1]Bechar A,Vigneault C. Agricultural robots for field operations:concepts and components[J]. Biosystems Engineering,2016,149:94-111.
[2]Jiang T,Wang J Z. Study on path planning method for mobile robot based on fruit fly optimization algorithm[J]. Applied Mechanics and Materials,2014,536:970-973.
[3]Guo J C,Gao Y,Cui G Z. The path planning for mobile robot based on bat algorithm[J]. International Journal of Automation and Control,2015,9(1):50-60.
[4]Li G S,Chou W S. Path planning for mobile robot using self-adaptive learning particle swarm optimization[J]. Science China Information Sciences,2018,61(5):1-18.
[5]Zhang H M,Li M L. Rapid path planning algorithm for mobile robot in dynamic environment[J]. Advances in Mechanical Engineering,2017,9(12):1-12.
[6]Han Z L,Wang D Q,Liu F,et al. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm[J]. PLoS One,2017,12(7):1-16.
[7]Chen Y B,Mei Y S,Yu J Q,et al. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm[J]. Neurocomputing,2017,266:445-457.
[8]刘二辉,姚锡凡. 基于改进遗传算法的自动导引小车路径规划及其实现平台[J]. 计算机集成制造系统,2017,23(3):465-472.
[9]周凌云,丁立新,邹桢苹. 多启发式信息蚁群优化算法求解取样送检路径规划问题[J]. 武汉大学学报(理学版),2017,63(5):439-447.
[10]Li P F,Wang H B,Li X G. Improved ant colony algorithm for global path planning[C]//Liu L,Yang C,Ke J. AIP Conference Proceedings. NY,USA:Amer Inst Physics,2017:1-5.
[11]游晓明,刘升,吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策,2017,32(3):552-556.
[12]Yu L J,Wei Z H,Wang H,et al. Path planning for mobile robot based on fast convergence ant colony algorithm[C]//IEEE. ICMA. NJ(USA):IEEE,2017:1493-1497.
[13]饶楚锋,韩华亭,瞿珏,等. 多策略蚁群算法求解诱导维修路径规划[J]. 火力与指挥控制,2017,42(10):82-86.
[14]康冰,王曦辉,刘富. 基于改进蚁群算法的搜索机器人路径规划[J]. 吉林大学学报(工学版),2014,44(4):1062-1068.
[15]万晓凤,胡伟,方武义,等. 基于改进蚁群算法的机器人路径规划研究[J]. 计算机工程与应用,2014,50(18):63-66.
[16]王辉,朱龙彪,王景良,等. 基于Dijkstra-蚁群算法的泊车系统路径规划研究[J]. 工程设计学报,2016,23(5):489-496.
[17]Liu J H,Yang J G,Liu H P,et al. An improved ant colony algorithm for robot path planning[J]. Soft Computing,2017,21(19):5829-5839.
[18]Yang J Y,Ding R F,Zhang Y,et al. An improved ant colony optimization (I-ACO) method for the quasi travelling salesman problem (Quasi-TSP)[J]. International Journal of Geographical Information Science,2015,29(9):1534-1551.
[19]谭覃,刘树东,张艳. 移动机器人路径规划仿真研究[J]. 计算机仿真,2016,33(8):354-358.
[20]江杰,张怀超. 关于移动机器人路径最优规划研究[J]. 计算机仿真,2016,33(9):329-334.
[21]王钦钊,程金勇,李小龙. 复杂环境下机器人路径规划方法研究[J]. 计算机仿真,2017,34(10):296-300.
[22]董晔,吴丽娟. 基于混合人工势场-蚁群算法的机器人避障[J]. 辽宁科技大学学报,2015,38(3):212-216.
[1]龚瑞昆,吴天华.基于改进蚁群算法的联合收割机调度路径优化[J].江苏农业科学,2019,47(04):197.
Gong Ruikun,et al.Optimization of dispatching path of combine harvester based on improved ant colony algorithm[J].Jiangsu Agricultural Sciences,2019,47(23):197.