|本期目录/Table of Contents|

[1]狄霖,刘玲玲,钟志仁,等.水稻田铁氧化菌的丰度及微生物群落结构组成[J].江苏农业科学,2019,47(10):296-300.
 Di Lin,et al.Abundance of iron oxidizing bacteria and composition of microbial community structure in paddy fields[J].Jiangsu Agricultural Sciences,2019,47(10):296-300.
点击复制

水稻田铁氧化菌的丰度及微生物群落结构组成(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第10期
页码:
296-300
栏目:
资源与环境
出版日期:
2019-06-12

文章信息/Info

Title:
Abundance of iron oxidizing bacteria and composition of microbial community structure in paddy fields
作者:
狄霖1 刘玲玲2 钟志仁3 黄顾林1 盛海君2 王娟娟2 朱友理4
1.江苏省镇江市耕地质量保护站,江苏镇江 212009; 2.扬州大学环境科学与工程学院,江苏扬州 225127;
3.江苏省镇江市农业技术推广站,江苏镇江 212009; 4.江苏省镇江市植保植检站,江苏镇江 212009
Author(s):
Di Linet al
关键词:
水稻土铁氧化细菌微生物群落结构丰度
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
水稻土中铁氧化物的存在对于土壤中的重金属离子及有机污染物有较强的吸附固定能力,研究参与其形成的微生物有重要的生态意义。分别采用浓度梯度试管富集培养不同水稻根部土壤中的铁氧化菌,用最大可能数(most probable number,简称MPN)方法计算其丰度;测定土壤主要微生物群落结构,并结合各种土壤理化因素进行多元生态统计分析。结果表明,几种不同肥力的水稻土中可培养的微好氧铁氧化细菌数平均达169万个/g,其丰度与土壤pH值呈正相关,而与其他主要土壤理化性质没有显著相关性。在门的水平上,所测样品中以Proteobacteria(变形菌门)为主要类别,平均占细菌总量的46.35%。在属水平上,则以Nitrospira(硝化螺旋菌属)、Anaeromyxobacter(厌氧黏细菌)、Geobacter(地杆菌属)、Anaerolinea(厌氧绳菌属)等为主,代表性的铁氧化菌Gallionella(披毛菌属)在所有相对丰度中排名第7,达2.2%。总体而言,各种样品的理化性质相近,但是微生物群落的结构差异较大,其分布受到样品理化性质的影响较为复杂。
Abstract:
-

参考文献/References:

[1]Lovley Derek R. Dissimilatory Fe(Ⅲ)-and Mn(Ⅳ)-reducing prokaryotes[J]. Prokaryotes,2006,2:635-658.
[2]Fortin D. What biogenic minerals tell us[J]. Science,2004,303(5664):1618-1619.
[3]胡敏,李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报,2014,51(4):683-698.
[4]傅友强,于智卫,蔡昆争,等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报,2010,16(6):1527-1534.
[5]Neubauer S C,Emerson D,Megonigal J P. Life at the energetic edge:kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J]. Applied and Environmental Microbiology,2002,68(8):3988-3995.
[6]Hu M,Li F B,Lei J,et al. Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland[J]. Environmental Science-Processes & Impacts,2015,17(1):213-224.
[7]杨旭健,傅友强,沈宏,等. 水稻根表铁膜及其形成的形态、生理及分子机理综述[J]. 生态学杂志,2014,33(8):2235-2244.
[8]Kgel-Knabner I,Amelung W,Cao Z H,et al. Biogeochemistry of paddy soils[J]. Geoderma,2010,157(1):1-14.
[9]邢承华,蔡妙珍,刘鹏,等. 植物根表铁锰氧化物胶膜的环境生态作用[J]. 生态环境,2006,15(6):1380-1384.
[10]杨俊兴,郭庆军,郑国砥,等. 赤泥条件下水稻根际铁膜形成及镉吸收机理研究[J]. 生态环境学报,2016,25(4):698-704.
[11]刘侯俊,胡向白,张俊伶,等. 水稻根表铁膜吸附镉及植株吸收镉的动态[J]. 应用生态学报,2007,18(2):425-430.
[12]Wang M E,Chen W P,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,Southern China[J]. Chemosphere,2016,144:346-351.
[13]Chen X P,Zhu Y G,Hong M A,et al. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry,2008,27(4):881-887.
[14]王兆苏,王新军,陈学萍,等. 微生物铁氧化作用对砷迁移转化的影响[J]. 环境科学学报,2011,31(2):328-333.
[15]Kato S,Chan C,Itoh T,et al. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium[J]. Applied and Environmental Microbiology,2013,79(17):5283-5290.
[16]Wang J J,Muyzer G,Bodelier P L. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria[J]. ISME Journal,2009,3(6):715-725.
[17]Luedecke C,Reiche M,Eusterhues K,et al. Acid-tolerant microaerophilic Fe(Ⅱ)-oxidizing bacteria promote Fe(Ⅲ)-accumulation in a fen[J]. Environmental Microbiology,2010,12(10):2814-2825.
[18]Chu H Y,Lin X,Fujii T,et al. Soil microbial biomass,dehydrogenase activity,bacterial community structure in response to long-term fertilizer management[J]. Soil Biology & Biochemistry,2007,39(11):2971-2976.
[19]Gu Y F,Zhang X P,Tu S H,et al. Soil microbial biomass,crop yields,and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping[J]. European Journal of Soil Biology,2009,45(3):239-246.
[20]Kostka J E,Luther G W. Partitioning and speciation of solid-phase iron in salt-marsh sediments[J]. Geochimica Et Cosmochimica Acta,1994,58(7):1701-1710.
[21]Weiss J V,Emerson D,Backer S M,et al. Enumeration of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing bacteria in the root zone of wetland plants:implications for a rhizosphere iron cycle[J]. Biogeochemistry,2003,64(1):77-96.
[22]Fru E C,Piccinelli P,Fortin D. Insights into the global microbial community structure associated with iron oxyhydroxide minerals deposited in the aerobic biogeosphere[J]. Geomicrobiology Journal,2012,29(7):587-610.
[23]Weiss J V,Emerson D,Backer S M,et al. Enumeration of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing bacteria in the root zone of wetland plants:implications for a rhizosphere iron cycle[J]. Biogeochemistry,2003,64(1):77-96.
[24]Lovley D R. Environmental microbe-metal interactions[M]. Washington DC:ASM Press,2000:3-30.
[25]胡莹,黄益宗,黄艳超,等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报,2013,32(3):432-437.
[26]刘文菊,朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报,2005,25(2):358-363.

相似文献/References:

[1]袁瑞霞,于鹏.中国主要水稻种植区土壤对磷的吸附与解吸特性——以日本宇都宫土壤为参照[J].江苏农业科学,2014,42(02):286.
 Yuan Ruixia,et al.Characteristics of adsorption and desorption of phosphate in soils from Chinas main rice-growing areas—Compared with Utsunomiya soil of Japan[J].Jiangsu Agricultural Sciences,2014,42(10):286.
[2]黄会前,何腾兵,邓廷飞,等.黄壤性水稻土氧化铁形态及剖面分异特征[J].江苏农业科学,2017,45(17):273.
 Huang Huiqian,et al.Morphological and profile characteristics of iron oxide in yellow paddy soils[J].Jiangsu Agricultural Sciences,2017,45(10):273.
[3]徐祥明,王海兰,覃灵华.基于Image-Pro Plus的土壤颗粒微形态定量化研究[J].江苏农业科学,2018,46(1):236.
 Xu Xiangming,et al.Quantitative analysis of soil micromorphology based on Image-Pro Plus[J].Jiangsu Agricultural Sciences,2018,46(10):236.
[4]王亚婷,党媛,杜焰玲,等.成都平原典型稻作土壤重金属镉有效性及主要驱动机制[J].江苏农业科学,2020,48(1):225.
 Wang Yating,et al.Availability and main driving mechanism of heavy metal Cd in typical paddy soils in Chengdu Plain[J].Jiangsu Agricultural Sciences,2020,48(10):225.
[5]李剑睿,徐应明.长期淹水、传统灌溉、湿润灌溉条件下海泡石修复镉污染水稻土效应[J].江苏农业科学,2021,49(17):226.
 Li Jianrui,et al.Effects of sepiolite repairing cadmium-contaminated paddy soil under long-term flooding, traditional irrigation, and wetting irrigation[J].Jiangsu Agricultural Sciences,2021,49(10):226.
[6]陈小磊,舒强,田欢,等.浙北平原区土壤分形特征及其与土壤肥力的关系——以水稻土为例[J].江苏农业科学,2021,49(22):247.
 Chen Xiaolei,et al.Soil fractal characteristics and its relationship with soil fertility in plain area of northern Zhejiang—Taking paddy soil as an example[J].Jiangsu Agricultural Sciences,2021,49(10):247.
[7]吴玲.水稻土中土著细菌群落对重金属Cd的响应[J].江苏农业科学,2022,50(22):233.
 Wu Ling.Response of indigenous bacterial communities to cadmium in paddy soil[J].Jiangsu Agricultural Sciences,2022,50(10):233.
[8]杜泽云,陶思敏,娄运生,等.施用生物炭和硅肥对增温稻田土壤酶活性的影响[J].江苏农业科学,2023,51(1):225.
 Du Zeyun??et al.Impacts of biochar and silicate fertilization application on soil enzyme activities under nighttime warming in paddy soil[J].Jiangsu Agricultural Sciences,2023,51(10):225.
[9]刘静,王萍,代良羽,等.喀斯特山区高镉稻田治理措施对稻米降镉的效果[J].江苏农业科学,2023,51(5):227.
 Liu Jing,et al.Effect of control measures on cadmium reduction of rice in karst mountainous area[J].Jiangsu Agricultural Sciences,2023,51(10):227.
[10]徐祖亮,陆晓辉.典型喀斯特流域水稻土发生特性及系统分类[J].江苏农业科学,2023,51(18):215.
 Xu Zuliang,et al.Genetic characteristics and systematic classification of paddy soils in typical karst watershed[J].Jiangsu Agricultural Sciences,2023,51(10):215.

备注/Memo

备注/Memo:
收稿日期:2018-01-15
基金项目:现代农业(稻麦)科技综合示范(镇江)项目(编号:SXGC[2015]240、SXGC[2016]227)。
作者简介:狄霖(1985—),男,江苏溧阳人,硕士,农艺师,主要从事农业技术推广工作。Tel:(0511)88877833;E-mail:dilin@live.cn。
通信作者:王娟娟,博士,副教授,主要从事土壤微生物学方面的研究。Tel:(0514)89797645;E-mail:wangjuanjuan@yzu.edu.cn。
更新日期/Last Update: 2019-05-20