[1]Lovley Derek R. Dissimilatory Fe(Ⅲ)-and Mn(Ⅳ)-reducing prokaryotes[J]. Prokaryotes,2006,2:635-658.
[2]Fortin D. What biogenic minerals tell us[J]. Science,2004,303(5664):1618-1619.
[3]胡敏,李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报,2014,51(4):683-698.
[4]傅友强,于智卫,蔡昆争,等. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报,2010,16(6):1527-1534.
[5]Neubauer S C,Emerson D,Megonigal J P. Life at the energetic edge:kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J]. Applied and Environmental Microbiology,2002,68(8):3988-3995.
[6]Hu M,Li F B,Lei J,et al. Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland[J]. Environmental Science-Processes & Impacts,2015,17(1):213-224.
[7]杨旭健,傅友强,沈宏,等. 水稻根表铁膜及其形成的形态、生理及分子机理综述[J]. 生态学杂志,2014,33(8):2235-2244.
[8]Kgel-Knabner I,Amelung W,Cao Z H,et al. Biogeochemistry of paddy soils[J]. Geoderma,2010,157(1):1-14.
[9]邢承华,蔡妙珍,刘鹏,等. 植物根表铁锰氧化物胶膜的环境生态作用[J]. 生态环境,2006,15(6):1380-1384.
[10]杨俊兴,郭庆军,郑国砥,等. 赤泥条件下水稻根际铁膜形成及镉吸收机理研究[J]. 生态环境学报,2016,25(4):698-704.
[11]刘侯俊,胡向白,张俊伶,等. 水稻根表铁膜吸附镉及植株吸收镉的动态[J]. 应用生态学报,2007,18(2):425-430.
[12]Wang M E,Chen W P,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,Southern China[J]. Chemosphere,2016,144:346-351.
[13]Chen X P,Zhu Y G,Hong M A,et al. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry,2008,27(4):881-887.
[14]王兆苏,王新军,陈学萍,等. 微生物铁氧化作用对砷迁移转化的影响[J]. 环境科学学报,2011,31(2):328-333.
[15]Kato S,Chan C,Itoh T,et al. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium[J]. Applied and Environmental Microbiology,2013,79(17):5283-5290.
[16]Wang J J,Muyzer G,Bodelier P L. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria[J]. ISME Journal,2009,3(6):715-725.
[17]Luedecke C,Reiche M,Eusterhues K,et al. Acid-tolerant microaerophilic Fe(Ⅱ)-oxidizing bacteria promote Fe(Ⅲ)-accumulation in a fen[J]. Environmental Microbiology,2010,12(10):2814-2825.
[18]Chu H Y,Lin X,Fujii T,et al. Soil microbial biomass,dehydrogenase activity,bacterial community structure in response to long-term fertilizer management[J]. Soil Biology & Biochemistry,2007,39(11):2971-2976.
[19]Gu Y F,Zhang X P,Tu S H,et al. Soil microbial biomass,crop yields,and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping[J]. European Journal of Soil Biology,2009,45(3):239-246.
[20]Kostka J E,Luther G W. Partitioning and speciation of solid-phase iron in salt-marsh sediments[J]. Geochimica Et Cosmochimica Acta,1994,58(7):1701-1710.
[21]Weiss J V,Emerson D,Backer S M,et al. Enumeration of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing bacteria in the root zone of wetland plants:implications for a rhizosphere iron cycle[J]. Biogeochemistry,2003,64(1):77-96.
[22]Fru E C,Piccinelli P,Fortin D. Insights into the global microbial community structure associated with iron oxyhydroxide minerals deposited in the aerobic biogeosphere[J]. Geomicrobiology Journal,2012,29(7):587-610.
[23]Weiss J V,Emerson D,Backer S M,et al. Enumeration of Fe(Ⅱ)-oxidizing and Fe(Ⅲ)-reducing bacteria in the root zone of wetland plants:implications for a rhizosphere iron cycle[J]. Biogeochemistry,2003,64(1):77-96.
[24]Lovley D R. Environmental microbe-metal interactions[M]. Washington DC:ASM Press,2000:3-30.
[25]胡莹,黄益宗,黄艳超,等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报,2013,32(3):432-437.
[26]刘文菊,朱永官. 湿地植物根表的铁锰氧化物膜[J]. 生态学报,2005,25(2):358-363.
[1]袁瑞霞,于鹏.中国主要水稻种植区土壤对磷的吸附与解吸特性——以日本宇都宫土壤为参照[J].江苏农业科学,2014,42(02):286.
Yuan Ruixia,et al.Characteristics of adsorption and desorption of phosphate in soils from Chinas main rice-growing areas—Compared with Utsunomiya soil of Japan[J].Jiangsu Agricultural Sciences,2014,42(10):286.
[2]黄会前,何腾兵,邓廷飞,等.黄壤性水稻土氧化铁形态及剖面分异特征[J].江苏农业科学,2017,45(17):273.
Huang Huiqian,et al.Morphological and profile characteristics of iron oxide in yellow paddy soils[J].Jiangsu Agricultural Sciences,2017,45(10):273.
[3]徐祥明,王海兰,覃灵华.基于Image-Pro Plus的土壤颗粒微形态定量化研究[J].江苏农业科学,2018,46(1):236.
Xu Xiangming,et al.Quantitative analysis of soil micromorphology based on Image-Pro Plus[J].Jiangsu Agricultural Sciences,2018,46(10):236.
[4]王亚婷,党媛,杜焰玲,等.成都平原典型稻作土壤重金属镉有效性及主要驱动机制[J].江苏农业科学,2020,48(1):225.
Wang Yating,et al.Availability and main driving mechanism of heavy metal Cd in typical paddy soils in Chengdu Plain[J].Jiangsu Agricultural Sciences,2020,48(10):225.
[5]李剑睿,徐应明.长期淹水、传统灌溉、湿润灌溉条件下海泡石修复镉污染水稻土效应[J].江苏农业科学,2021,49(17):226.
Li Jianrui,et al.Effects of sepiolite repairing cadmium-contaminated paddy soil under long-term flooding, traditional irrigation, and wetting irrigation[J].Jiangsu Agricultural Sciences,2021,49(10):226.
[6]陈小磊,舒强,田欢,等.浙北平原区土壤分形特征及其与土壤肥力的关系——以水稻土为例[J].江苏农业科学,2021,49(22):247.
Chen Xiaolei,et al.Soil fractal characteristics and its relationship with soil fertility in plain area of northern Zhejiang—Taking paddy soil as an example[J].Jiangsu Agricultural Sciences,2021,49(10):247.
[7]吴玲.水稻土中土著细菌群落对重金属Cd的响应[J].江苏农业科学,2022,50(22):233.
Wu Ling.Response of indigenous bacterial communities to cadmium in paddy soil[J].Jiangsu Agricultural Sciences,2022,50(10):233.
[8]杜泽云,陶思敏,娄运生,等.施用生物炭和硅肥对增温稻田土壤酶活性的影响[J].江苏农业科学,2023,51(1):225.
Du Zeyun??et al.Impacts of biochar and silicate fertilization application on soil enzyme activities under nighttime warming in paddy soil[J].Jiangsu Agricultural Sciences,2023,51(10):225.
[9]刘静,王萍,代良羽,等.喀斯特山区高镉稻田治理措施对稻米降镉的效果[J].江苏农业科学,2023,51(5):227.
Liu Jing,et al.Effect of control measures on cadmium reduction of rice in karst mountainous area[J].Jiangsu Agricultural Sciences,2023,51(10):227.
[10]徐祖亮,陆晓辉.典型喀斯特流域水稻土发生特性及系统分类[J].江苏农业科学,2023,51(18):215.
Xu Zuliang,et al.Genetic characteristics and systematic classification of paddy soils in typical karst watershed[J].Jiangsu Agricultural Sciences,2023,51(10):215.