|本期目录/Table of Contents|

[1]万丽丽,王转茸,范志雄,等.单倍体诱导创建二倍体技术在油菜遗传育种中的研究进展[J].江苏农业科学,2020,48(10):38-45.
 Wan Lili,et al.Research progress on haploid induced diploid technology in rapeseed genetics and breeding[J].Jiangsu Agricultural Sciences,2020,48(10):38-45.
点击复制

单倍体诱导创建二倍体技术在油菜遗传育种中的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第10期
页码:
38-45
栏目:
专论与综述
出版日期:
2020-05-20

文章信息/Info

Title:
Research progress on haploid induced diploid technology in rapeseed genetics and breeding
作者:
万丽丽1 王转茸1 范志雄2 辛 强3 洪登峰3 杨光圣3 孙玉宏1 谭 庆1
1.武汉市农业科学院作物研究所作物遗传改良中心,湖北武汉 430065; 2.安徽省农业科学院作物研究所,安徽合肥 230001;
3.华中农业大学植物科学技术学院,湖北武汉 430070
Author(s):
Wan Liliet al
关键词:
双单倍体油菜遗传育种小孢子培养遗传转化单倍体诱导数量性状基因座(QTLs)分子机制
Keywords:
-
分类号:
S634.303.2
DOI:
-
文献标志码:
A
摘要:
单倍体诱导创建二倍体的技术体系主要包括2种类型。(1)对植物中雄性或者雌性生殖器官进行培养获得具有单套染色体组的组织,经过天然或者加倍剂处理获得二倍体;(2)对CENH3基因进行修饰获得单倍体诱导系,利用单倍体诱导系与不同材料杂交获得后者的单倍体,进而加倍成二倍体。在油菜中应用最广泛的单倍体诱导创建二倍体植株的技术是小孢子培养方法,其过程受到3个因素的影响,分别为小孢子胚发生能力、小孢子天然加倍和加倍剂处理后的加倍效率、从胚再生成完整植株的能力。经过多年研究,在油菜中建立的小孢子诱导创建二倍体的技术为油菜遗传育种研究提供了重要的技术支持。小孢子和小孢子培养得到的胚均能用于创造突变体及遗传转化试验。通过遗传学方法定位了决定油菜小孢子胚发生、天然加倍以及胚状体直接成苗的数量性状基因座(QTLs),可在不同群体中验证候选基因。深入挖掘调控小孢子胚发生和再生成苗的分子机制,分析胚性细胞发育的转变、起始细胞的分化以及胚形态发生的基因调控网络,进而为理解油菜单倍体诱导以及二倍体发生的作用机制提供依据。随着植物单倍体诱导发生的分子机制被逐步揭示,在油菜中对与拟南芥染色体减数分裂相关的同源基因进行修饰能够获得单倍体诱导系,将其与待改良的父母本进行杂交可快速获得具有不同亲本背景的单倍体,经过加倍剂处理可快速获得纯系,单倍体诱导技术能够用于反向育种研究以及品种的遗传改良。
Abstract:
-

参考文献/References:

[1]Ferrie A M R,Caswell K L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production[J]. Plant Cell Tissue and Organ Culture,2011,104(3):301-309.
[2]Szarejko I,Forster B P. Doubled haploidy and induced mutation[J]. Euphytica,2007,158(3):359-370.
[3]Custers J B M. Microspore culture in rapeseed (Brassica napus L.)[M]. Dordrecht:Springer Netherlands,2003.
[4]da Silva D J C.Protocol for broccoli microspore culture[M]. Dordrecht:Springer Netherlands,2003.
[5]Ferrie A. Microspore culture of Brassica species[M]. Dordrecht:Springer Netherlands,2003.
[6]Ferrie A M R,Keller W A. Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae[J]. In Vitro Cellular & Developmental Biology Plant,2007,43(4):348-355.
[7]Friedt W,Zarhloul M K. Haploids in the improvement of Crucifers[M]. Berlin:Springer,2005.
[8]Hansen M. Protocol for microspore culture in Brassica[M]. Dordrecht:Springer Netherlands,2003.
[9]Ravi M,Chan S W L. Haploid plants produced by centromere-mediated genome elimination[J]. Nature,2010,464(7288):615-618.
[10]Barro F,Martín A. Response of different genotypes of Brassica carinata to microspore culture[J]. Plant Breeding,2008,118(1):79-81.
[11]Siebel J,Pauls K P. A comparison of anther and microspore culture as a breeding tool in Brassica napus[J]. Theoretical and Applied Genetics,1989,78(4):473-479.
[12]Takahata Y,Fukuoka H,Wakui K. Utilization of microspore-derived embryos[M]//Biotechnology in Agriculture and Forestry,2005.
[13]Ferrie A M R,Palmer C E,Keller W A. Haploid embryogenesis[M]//Thorpe T A. In vitro embryogenesis in plants. Dordrecht:Kluwer Academic Publishers,1995:309-344.
[14]Dirks R,van Dun K,de Snoo C B,et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnology Journal,2009,7(9):837-845.
[15]Pink D,Bailey L,McClement S,et al. Double haploids,markers and QTL analysis in vegetable brassicas[J]. Euphytica,2008,164(2):509-514.
[16]Thomas W T B,Forster B P,Gertsson B. Doubled haploids in breeding[M]. Dordrecht:Springer Netherlands,2003.
[17]Maluszynski M. Officially released mutant varieties — The FAO/IAEA database[J]. Plant Cell Tissue and Organ Culture,2001,65(3):175-177.
[18]Ferrie A M R,Taylor D C,Mackenzie S L,et al. Microspore mutagenesis of Brassica species for fatty acid modifications:a preliminary evaluation[J]. Plant Breeding,2008,127(5):501-506.
[19]Barro F,Fernandezescobar J,Mdela V,et al. Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores[J]. Euphytica,2003,129:1-6.
[20]Beaith M E,Fletcher R S,Kott L S. Reduction of saturated fats by mutagenesis and heat selection in Brassica napus L.[J]. Euphytica,2005,144:1-9.
[21]Sonntag K,Rudloff E. Microspore mutagenesis in transgenic oilseed rape for the modification of fatty-acid composition[J]. Acta Universitatis Latviensis Biology,2004,676:227-230.
[22]Barro F,Fernandez-Escobar J,de la Vega M,et al. Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores[J]. Plant Breeding,2008,120(3):262-264.
[23]McClinchey S L,Kott L S. Production of mutants with high cold tolerance in spring canola (Brassica napus)[J]. Euphytica,2008,162(1):51-67.
[24]Liu S,Wang H,Zhang J,et al. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum[J]. Plant Cell Reports,2005,24(3):133-144.
[25]Beversdorf W D,Kott L S. An in vitro mutagenesis/selection system for Brassica napus[J]. Iowa State Journal of Research,1987(4):435-443.
[26]Xu L,Najeeb U,Naeem M S,et al. In vitro mutagenesis and genetic improvement[M]. New York:Springer,2012.
[27]Yun H E,Wan G,Chen S,et al. Effects of mutagenic treatments of isolated microspores and microspore-derived embryos on embryogenesis and plant regeneration in oilseed rape[C]//International Rapeseed Congress,2007.
[28]Dormann M,Oelck M,Wang H M. Transformed embryogenic microspores for the generation of fertile homozygous plants:USA,6316694[P]. 2001-11-13.
[29]Fukuoka H,Ogawa T,Matsuoka M,et al. Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants[J]. Plant Cell Reports,1998,17:323-328.
[30]Guerche P,Charbonnier M,Jouanin L,et al. Direct gene transfer by electroporation in Brassica napus[J]. Plant Science,1987,52(1/2):111-116.
[31]Jardinaud M F,Souvré A,Alibert G. Transient GUS gene expression in Brassica napus electroporated microspores[J]. Plant Science,1993,93:177-184.
[32]Jones-Villeneuve E,Huang B,Prudhomme I,et al. Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed[J]. Plant Cell Tissue & Organ Culture,1995,40(4):97-100.
[33]Nehlin L,Mllers C,Bergman P,et al. Transient β-gus and gfp gene expression and viability analysis of microprojectile bombarded microspores of Brassica napus L.[J]. Journal of Plant Physiology,2000,156(2):175-183.
[34]Pechan P M. Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium[J]. Plant Cell Reports,1989,8(7):387.
[35]Abdollahi M R,Moieni A,Salmanian A H,et al. Secondary embryogenesis and transient expression of the β-glucuronidase gene in hypocotyls of rapeseed microspore-derived embryos[J]. Biologia Plantarum,2009,53(3):573-577.
[36]Chugh A,Amundsen E,Eudes F. Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores[J]. Plant Cell Reports,2009,28(5):801-810.
[37]Chen J L,Beversdorf W D. A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.)[J]. Theoretical & Applied Genetics,1994,88(2):187.
[38]Huang B. Genetic manipulation of microspores and microspore-derived embryos[J]. Vitro Plant,1992,28:53-58.
[39]Neuhaus G,Spangenberg G,Scheid O M,et al. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids[J]. Theoretical & Applied Genetics,1987,75(1):30-36.
[40]Swanson E B,Erickson L R. Haploid transformation in Brassica napus using an octopine-producing strain of Agrobacterium tumefaciens[J]. Theoretical & Applied Genetics,1989,78(6):831-835.
[41]Abdollahi M R,Moieni A,Mousavi A,et al. High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos[J]. Molecular Biology Reports,2011,38(2):711-719.
[42]Cegielska-Taras T,Pniewski T,Szaa L. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens[J]. Journal of Applied Genetics,2008,49(4):343-347.
[43]hman I M,Kazachkova N I,Kamnert I M,et al. Characterisation of transgenic oilseed rape expressing pea lectin in anthers for improved resistance to pollen beetle[J]. Euphytica,2006,151(3):321-330.
[44]Reiss E,Schubert J,Scholze P,et al. The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to Plasmodiophora brassicae[J]. Plant Breeding,2010,128(2):210-212.
[45]Zhang F L,Takahata Y. Inheritance of microspore embryogenic ability in Brassica crops[J]. Theoretical & Applied Genetics,2001,103(2/3):254-258.
[46]Zhang F,Aoki S,Takahata Y. RAPD markers linked to microspore embryogenic ability in Brassica crops[J]. Euphytica,2003,131(2):207-213.
[47]Wan Y,Rocheford T R,Widholm J M. RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize[J]. Theoretical & Applied Genetics,1992,85(2/3):360-365.
[48]Cloutier S,Cappadocia M,Landry B S. Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations[J]. Theoretical & Applied Genetics,1995,91(6/7):841-847.
[49]Ajisaka H,Kuginuki Y,Shiratori M,et al. Mapping loci affecting the cultural efficiency of microspore culture of Brassica rapa L. syn. campestris L. using DNA polymorphism[J]. Breed Sci,1999,49(3):187-192.
[50]Iniguez-Luy F L,Lukens L,Farnham M W,et al. Development of public immortal mapping populations,molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea[J]. Theoretical & Applied Genetics,2009,120(1):31-43.
[51]Ujjalkumar N,Mohammedcm I,Christian M. Early,non-destructive selection of microspore-derived embryo genotypes in oilseed rape (Brassica napus L.) by molecular markers and oil quality analysis[J]. Molecular Breeding,2007,19(3):285-289.
[52]Kitashiba H,Taguchi K,Kaneko I,et al. Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis[J]. Plant Cell Reports,2016,35(10):2197-2204.
[53]Ecke W,Clemens R,Honsdorf N,et al. Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.)[J]. Theoretical & Applied Genetics,2010,120(5):921-931.
[54]Hasan M,Friedt W,Ponskühnemann J,et al. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus)[J]. Theoretical & Applied Genetics,2008,116(8):1035-1049.
[55]Maraschin S F,de Priester W,Spaink H P,et al. Androgenic switch:an example of plant embryogenesis from the male gametophyte perspective[J]. Journal of Experimental Botany,2005,56(417):1711-1726.
[56]Malik M R,Wang F,Dirpaul J M,et al. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus[J]. Plant Physiology,2007,144(1):134-154.
[57]Malik M R,Wang F,Dirpaul J M,et al. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis[J]. Journal of Experimental Botany,2008,59(10):2857-2873.
[58]Rotarenco V,Dicu G,State D,et al. New inducers of maternal haploids in maize[J]. Maize Genet Coop Newslett,2010,84:1-7.
[59]Britt A B,Kuppu S. Cenh3:an emerging player in haploid induction technology[J]. Front. Plant Sci,2016,7,357.
[60]Watts A,Kumar V,Bhat S R. Centromeric histone H3 protein:from basic study to plant breeding applications[J]. Plant Biochem,Biotechnol,2016,25:339-348.
[61]Xu X W,Li L,Dong X,et al. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize[J]. J Exp Bot,2013,64(4):1083-1096.
[62]Dwivedi S L,Britt A B,Tripathi L,et al. Haploids:constraints and opportunities in plant breeding[J]. Biotechnol Adv,2015,33(6):812-829.
[63]Wijnker E,van Dun K,de Snoo C B,et al. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant[J]. Nature Genetics,2012,44(4):467-470.

相似文献/References:

[1]朱志武,刘雪基,陈震,等.烯效唑对油菜植株及产量性状的影响[J].江苏农业科学,2013,41(05):77.
 Zhu Zhiwu,et al.Effect of uniconazole on growth and yield traits of rapeseed[J].Jiangsu Agricultural Sciences,2013,41(10):77.
[2]孙华,张建栋,黄萌,等.高产、多抗、适合机械化作业油菜新品种苏油7号的选育[J].江苏农业科学,2015,43(12):105.
 Sun Hua,et al.Breeding of new rapeseed cultivar “Suyou No.7” with high yield,multi-resistance and being suitable for mechanized operations[J].Jiangsu Agricultural Sciences,2015,43(10):105.
[3]李锦霞,李爱民,沈学庆,等.油菜板茬条播高产栽培技术集成[J].江苏农业科学,2013,41(08):104.
 Li Jinxia,et al.High yield cultivation technology integration of drilling rapeseed in non-tillage land[J].Jiangsu Agricultural Sciences,2013,41(10):104.
[4]刘雪基,李爱民,莫婷,等.稻茬油菜免耕摆栽覆草高产栽培技术研究[J].江苏农业科学,2013,41(08):107.
 Liu Xueji,et al.No-tillage and covering grass high-yield cultivation technology of rapeseed in paddy fields[J].Jiangsu Agricultural Sciences,2013,41(10):107.
[5]何俊龙,刘强,宋海星,等.包膜复混肥对油菜产量与生物量的影响[J].江苏农业科学,2014,42(08):103.
 He Junlong,et al.Effect of coated compound fertilizer on yield and biomass of rapeseed[J].Jiangsu Agricultural Sciences,2014,42(10):103.
[6]张洁夫,陈锋,戚存扣,等.早熟、高产、适合机械化作业油菜新品种宁杂27的选育[J].江苏农业科学,2013,41(09):93.
 Zhang Jiefu,et al.Breeding of new rapeseed cultivar “Ningza 27” with early maturity, high yield and being suitable for mechanized operations[J].Jiangsu Agricultural Sciences,2013,41(10):93.
[7]张智,田建华,任军荣,等.高油双低杂交油菜秦油88的选育、制种及高产栽培技术[J].江苏农业科学,2016,44(03):99.
 Zhang Zhi,et al.Breeding,seed production and high-yield cultivation techniques of hybrid rapeseed “Qinyou 88” with high oil and double low[J].Jiangsu Agricultural Sciences,2016,44(10):99.
[8]钟雪梅,代其林,马明莉,等.外源NO浸种对NaCl胁迫下油菜种子萌发和幼苗生长的影响[J].江苏农业科学,2016,44(03):102.
 Zhong Xuemei,et al.Effects of seed soaking with exogenous NO on seed germination and seedling growth of rapeseed under NaCl stress[J].Jiangsu Agricultural Sciences,2016,44(10):102.
[9]朱德进,张辉,黄卉,等.不同施肥处理对不同地力水平油菜产量和经济效益的影响[J].江苏农业科学,2013,41(10):73.
 Zhu Dejin,et al.Effects of fertilizer treatments on yield and economic benefits of rapeseed under different soil fertility[J].Jiangsu Agricultural Sciences,2013,41(10):73.
[10]牛艳,赵子丹,姜瑞,等.氨氯吡啶酸在油菜和土壤中的消解动态[J].江苏农业科学,2013,41(10):306.
 Niu Yan,et al.Degradation dynamics of picloram in rapeseed and soil[J].Jiangsu Agricultural Sciences,2013,41(10):306.

备注/Memo

备注/Memo:
收稿日期:2019-04-29
基金项目:中国博士后科学基金第65批面上资助项目(编号:2019M652726);武汉市农业科学院博士后项目。
作者简介:万丽丽(1982—),女,湖北武汉人,博士,农艺师,主要从事油菜分子设计育种研究。E-mail:wanlili13226@163.com。
更新日期/Last Update: 2020-05-20