[1]谢迎新,张淑利,冯伟,等. 大气氮素沉降研究进展[J]. 中国生态农业学报,2010,18(4):897-904.
[2]Lepori F,Keck F. Effects of atmospheric nitrogen deposition on remote freshwater ecosystems[J]. Ambio,2012,41(3):235-246.
[3]胡正华,张寒,陈书涛,等. 氮沉降对林带土壤N2O和CH4通量的影响[J]. 中国环境科学,2011,31(6):892-897.
[4]Porter E M,Bowman W D,Clark C M,et al. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity[J]. Biogeochemistry,2013,114(1/2/3):93-120.
[5]Chan C H,Kuntz K W. Lake Ontario atmospheric deposition 1969—1978[J]. Water,Air,and Soil Pollution,1982,18(1/2/3):83-99.
[6]王小治,朱建国,高人,等. 太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例[J]. 应用生态学报,2004,15(9):1616-1620.
[7]Zhai S J,Yang L Y,Hu W P. Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in northern lake Taihu,China[J]. Environmental Management,2009,44(3):542-551.
[8]宋欢欢,姜春明,宇万太. 大气氮沉降的基本特征与监测方法[J]. 应用生态学报,2014,25(2):599-610.
[9]骆晓声,石伟琦,鲁丽,等. 我国雷州半岛典型农田大气氮沉降研究[J]. 生态学报,2014,34(19):5541-5548.
[10]杨正先,于丽敏,张志锋,等. 渤海大气氮沉降通量初步研究[C]//环境污染与公共健康国际会议论文集. 北京:美国科研出版社,2012:72-75.
[11]盛文萍,于贵瑞,方华军,等. 大气氮沉降通量观测方法[J]. 生态学杂志,2010,29(8):1671-1678.
[12]张欢,李恒鹏,李新艳,等. 太湖流域典型农业区氮平衡时间变化特征及驱动因素[J]. 土壤通报,2014,45(5),1119-1129.
[13]许朋柱,秦伯强,香宝,等. 区域农业用地营养盐剩余量的长期变化研究[J]. 地理科学,2006,26(6):668-673.
[14]刘超明,唐美庆,马坤,等. 北京地区典型落叶阔叶乔木叶片含氮量和δ15N值对大气氮沉降的响应[J]. 生态学报,2017,37(7):2334-2341.
[15]郝吉明,齐超龙,段雷,等. 用SMB法确定中国土壤的营养氮沉降临界负荷[J]. 清华大学学报(自然科学版),2003,43(6):849-853.
[16]段雷,黄永梅,郝吉明,等. 中国植被对氮和盐基阳离子吸收速率及其在土壤酸化中的作用[J]. 环境科学,2002,23(3):68-74.
[17]de Vries W,Posch M,Reinds G J,et al. Critical loads and their exceedance on forest soils in Europe[R]. The Netherlands:Wageningen,1992.
[18]Federal Environmental Agency (Umweltbundesamt). UN ECE-Convention on long-range transboundary air pollution-task force on reactive nitrogen[R/OL]. (2011-08)[2019-01-01]https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4207.pdf.
[19]熊毅,李庆逵. 中国土壤[M]. 2版.北京:科学出版社,1987.
[20]段雷. 中国酸沉降临界负荷区划研究[M]. 北京:清华大学,2000.
[21]叶雪梅,郝吉明,段雷,等. 中国主要湖泊营养氮沉降临界负荷的研究[J]. 环境污染与防治,2002,24(1):54-58.
[1]杨君珑,李小伟.模拟氮沉降对干旱半干旱区几种杂草生长及光合特征的影响[J].江苏农业科学,2015,43(12):157.
Yang Junlong,et al.Effects of simulated nitrogen deposition on growth and photosynthetic characteristic of weeds in arid and semiarid area[J].Jiangsu Agricultural Sciences,2015,43(11):157.
[2]张婉营,郁亚娟,孙秀秀.流域农业面源污染控制模拟优化系统的软件实现[J].江苏农业科学,2016,44(08):451.
Zhang Wanying,et al.Software realization of simulation and optimization system for agricultural non-point source pollution on watershed scale[J].Jiangsu Agricultural Sciences,2016,44(11):451.
[3]曾燕,谭云娟,邱新法,等.我国十大流域不同等级降水的变化趋势分析[J].江苏农业科学,2017,45(14):189.
Zeng Yan,et al.Analysis of variation trend of precipitation with different grades among Chinas ten river basins[J].Jiangsu Agricultural Sciences,2017,45(11):189.
[4]魏枫,王慧娟,邱秀文,等.模拟氮沉降对樟树人工林土壤酶活性的影响[J].江苏农业科学,2019,47(19):129.
Wei Feng,et al.Effects of simulated nitrogen deposition on soil enzyme activities in Cinnamomum camphora plantation[J].Jiangsu Agricultural Sciences,2019,47(11):129.
[5]郑立津,赖慧捷,范辉华,等.氮沉降对闽楠幼苗生长和生理特性的影响[J].江苏农业科学,2024,52(2):152.
Zheng Lijin,et al.Impacts of nitrogen deposition on growth and physiological characteristics of Phoebe bournei seedlings[J].Jiangsu Agricultural Sciences,2024,52(11):152.