[1]孟祥东,傅俊范,周如军,等. 保护地主要园艺作物灰霉病菌生物学特性比较研究[J]. 沈阳农业大学学报,2007,38(3):322-326.
[2]郎立新,蒋兰玲. 切花月季温室灰霉病[J]. 中国花卉园艺,2006(20):41.
[3]费林瑶,高征,费琳琪,等. 日光温室切花月季灰霉病的发生与控制[J]. 辽宁农业职业技术学院学报,2007,9(1):12-13.
[4]赵杨,苗则彦,李颖,等. 番茄灰霉病防治研究进展[J]. 中国植保导刊,2014(7):21-29.
[5]张国珍,钟珊. 草莓灰霉病研究进展[J]. 植物保护,2018,44(2):1-10.
[6]张云峰,管会林,谢庆华,等. 有机物发酵液对温室大棚月季灰霉病发病率及采后性状的影响[J]. 北方园艺,2008(11):157-161.
[7]龚赛杰. 芍药灰霉病抗性差异的转录组测序分析研究[D]. 扬州:扬州大学,2016:16-18.
[8]王艳,杜弢,曾翠云,等. 甘肃省黄芩灰霉病的发生及其病原鉴定[J]. 中国现代中药,2017,19(12):1735-1738.
[9]王迪轩. 大棚蔬菜灰霉病的发生原因与综合防治[J]. 农村实用技术,2017(4):44-45.
[10]张静,吴明德,杨龙,等. 设施蔬菜灰霉病的发生与防治技术[J]. 长江蔬菜,2019(6):25-28.
[11]曹娴. 草莓抗灰霉病基因定位及榉树种质资源多样性的ISSR分析[D]. 上海:上海交通大学,2011:3-4.
[12]Bristow P R,Mcnicol R J,Williamson B. Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development[J]. Annals of Applied Biology,1986,109(3):545-554.
[13]高智谋,李艳梅,李喜玲,等. 源自不同寄主的灰葡萄孢生物学特性的比较研究[J]. 菌物学报,2009,28(3):370-377.
[14]Staats M,Baarlen P V,Kan J V. Molecular phylogeny of the plant pathogenic genus botrytis and the evolution of host specificity[J]. Molecular Biology and Evolution,2005,22(2):333-346.
[15]陈忠宪,姚环宇,张学明,等. 草莓灰霉病的发生与防治措施[J]. 吉林农业,2018(20):68-69.
[16]崔志婧. 灰霉菌产孢类群的划分及其遗传多态性分析[D]. 上海:华东师范大学,2012:2-9.
[17]赵菊润,席刚俊,赵桂华. 紫皮石斛上灰葡萄孢的分离和鉴定[J]. 西部林业科学,2014(2):42-47.
[18]邬颖. 灰霉病防治[J]. 林业与生态,2018(5):38-38.
[19]席雪丽. 灰霉菌侵染拟南芥过程中ACD5的功能分析[D]. 广州:中山大学,2011:2-3.
[20]魏伶俐. 灰葡萄孢毒素的产生条件及其对番茄植株的致病作用[D]. 扬州:扬州大学,2007:21-30.
[21]Plourde V,Gasconbarré M,Willems B,et al. Choledocho-ureteral anastomosis in the rat,a new experimental model of long-term,total,internal bile diversion[J]. Journal of Hepatology,1993,17(3):373-376.
[22]叶艳英,熊春晖,袁经相,等. 植物源杀菌剂防治灰霉病研究进展[J]. 生物灾害科学,2016,39(1):27-31.
[23]陈琪. 灰葡萄孢对速克灵抗性遗传及病理生理学的研究[D]. 合肥:安徽农业大学,2004:7-16.
[24]关鑫. 三株生防酵母菌对番茄灰霉病生物防治的比较研究[D]. 哈尔滨:东北农业大学,2014:38-39.
[25]张淑珍,靳立梅,徐鹏飞,等. 野生大豆接种大豆疫霉根腐病后苯丙氨酸解氨酶(PAL)活性的变化[J]. 大豆科学,2009,28(6):1044-1048.
[26]贺军花. 根皮苷和阿魏酸对苹果灰霉病抗性防御系统的影响[D]. 杨凌:西北农林科技大学,2018:4-8.
[27]Zhang H,Ma L,Jiang S,et al. Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries[J]. International Journal of Food Microbiology,2010,141(1/2):122-125.
[28]Ben-Shalom N,Ardi R,Pinto R,et al. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan[J]. Crop Protection,2003,22(2):285-290.
[29]李兆亮,原永兵,鞠志国,等. 细菌性角斑病菌诱导黄瓜叶片水杨酸的积累[J]. 植物学报,1997,39(11):1010-1014.
[30]Spletzer M E,Enyedi A J. Salicylic acid induces resistance to alternaria solani in hydroponically grown tomato[J]. Phytopathology,1999,89(9):722-727.
[31]王媛. 诱导拟南芥抗灰霉病机制的研究[D]. 昆明:云南师范大学,2007:13-15.
[32]Wang K T,Wu D Z. Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid[J]. Scientia Horticulturae,2019,244:352-364.
[33]赵伟. 热诱导氧化损伤对灰霉菌孢子萌发和芽管伸长的抑制[D]. 合肥:合肥工业大学,2014:16-31.
[34]张婷. 电子束辐照对灰葡萄孢菌的抑制作用及草莓抗病能力的研究[D]. 上海:上海师范大学,2011:32-52.
[35]Forges M,Vàsquez H,Charles F,et al. Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria×ananassa) against Botrytis cinerea[J]. Scientia Horticulturae,2018,240:603-613.
[36]Tronsmo A,Raa J. Antagonistic action of Trichoderma pseudokoningii against the apple pathogen Botrytis cinerea[J]. Journal of Phytopathology,1977,89(3):216-220.
[37]Dik A J,Koning G,Khl J. Evaluation of microbial antagonists for biological control of Botrytis cinerea stem infectionin cucumber and tomato[J]. European Journal of Plant Pathology,1999,105(2):115-122.
[38]Harman G E,Latorre B,Agosin E,et al. Biological and integrated control of botrytis bunch rot of grape using trichoderma spp[J]. Biological Control,1996,7(3):0-266.
[39]易齐. 无公害蔬菜病虫防治技术第二讲生物防治及物理防治直接取代部分化学农药的应用[J]. 植保技术与推广,1998(3).
[40]沈寅初. 农用抗生素研究开发新进展[J]. 植保技术与推广,1997,17(6):35-37.
[41]Wilson C L,Wisniewski M E,Droby S,et a1.Scientia Horticuhurae[J]. 1993,53(3):183-189.
[42]Zheng X D,Zhang H Y,Xi Y F. Postharvest biological control of gray mold rot of strawberry with Cryptococcus laurentii[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(5):171-175.
[43]Singh V,Devemll B. Baeillus subtilis as control agent against fungal pathogens of citrus fruit[J]. Trans Br Mycol Soc,1984,83(3):487-490.
[44]Mad M,Guizzardi M,Pratctla P C. Biological control of grey mold in pears by antiagonistic baeterla[J]. Biological Control,1996,7:30-37.
[45]马晨,周欣玥,王全. 番茄灰霉病生物防治的研究进展[J]. 园艺与种苗,2018,38(2):61-62.
[46]Arras G. In vitro and in vivo control of Penicillium digitatum and Botrytis cinerea in citrus fruit by Bacillus subtilis strains[J]. Agri-coltura Mediterranea,1994,124(1):56-61.
[47]Fan Q,Tian S P,Li Y X,et al. Biological control of postharvest brown rot in peach and nectarine fruits by Bacillus subtilis (B-912)[J]. Acta Botanica Sinica,2000,42(11):1137-1143.
[48]张荣意,林运萍,谭志琼,等. 4株枯草芽孢杆菌对香蕉冠腐病的防效测定[J]. 热带农业科学,2004,24(2):4-8.
[49]孙健健. 灰霉病的微生物防治研究进展[J]. 天津化工,2012,26(4):11-14.
[50]de Meyer G,Bigirimana J,Elad Y,et al. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea[J]. European Journal of Plant Pathology,1998,104(3):279-286.
[51]童蕴慧,纪兆林,徐敬友,等. 灰霉病生物防治研究进展[J]. 中国生物防治,2003,19(3):131-135.
[52]Daulagala P P,Allan E J,Daulagala P P,et al. L-form bacteria of Pseudomonas syringae pv. phaseolicola,induce chitinases and enhance resistance to Botrytis cinerea,infection in Chinese cabbage[J]. Physiological and Molecular Plant Pathology,2003,62(5):253-263.
[53]张燕,夏更寿,赖志兵. 植物抗灰霉病菌分子机制的研究进展[J]. 生物技术通报,2018,34(2):10-24.
[54]Tesfaye M. Plant immunity to necrotrophs[J]. Annual Review of Phytopathology,2012,50(1):267-294.
[55]刘丽婷. 葡萄品种资源叶片白腐病和灰霉病的抗病鉴定及评价[D]. 沈阳:沈阳农业大学,2018:14-21.
[56]贾薇. 不同草莓品种对白粉病和灰霉病的抗性及其组织生理特征[D]. 保定:河北农业大学,2018:8-15.
[57]杜文昌. 浅谈北方大棚黄瓜灰霉病的发生与防治[J]. 农业开发与装备,2018(9):187-188.
[58]Haelconrad V,Aboumansour E,DíazRicci J C,et al. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana[J]. Plant Science,2015,241:120-127.
[59]王彦. 雷帕霉素拮抗灰葡萄孢菌的作用研究及分子机制初探[D]. 杭州:浙江农林大学,2016:45-49.
[60]Kishimoto K,Nishizawa Y,Tabei Y,et al. Transgenic cucumber expressing an endogenous class Ⅲ chitinase gene has reduced symptoms from Botrytis cinerea[J]. Journal of General Plant Pathology,2004,70(6):314-320.
[61]Liana O M D. 粉红黏帚菌诱导番茄灰霉病抗性的研究和番茄中关键抗性基因atpA的功能鉴定[D]. 哈尔滨:哈尔滨工业大学,2014:60-64.
[62]Kars I. The role of pectin degradation in pathogenesis of Botrytis cinerea[J]. Wur Wageningen Ur,2007.
[63]Lai Z B,Tesfaye M. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens[J]. Current Opinion in Plant Biology,2013,16(4):505-512.
[64]薛晓梦. 灰葡萄孢致病和菌核形成相关基因功能的初步研究[D]. 武汉:华中农业大学,2016:43-51.
[65]郭林霞. 转杜仲几丁质酶基因EuCHIT1番茄对灰霉病抗性研究[D]. 贵阳:贵州大学,2016:42-51.
[66]金万梅,尹淑萍,鲁韧强,等. GO基因对草莓遗传转化及抗病性鉴定[J]. 分子植物育种,2005,3(6):797-800.
[67]Botella M A,Parker J E,Frost L N,et al.Three genes of the Arabidopsis RPP1 vomplex resistance locus recognize distinct Peronospora parasitica avirulence determinants[J]. Plant Cell,1998,10:1847-1860.
[68]Sinapidou E,Williams K,Nott L,et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis[J]. Plant Journal,2004,38(6):898-909.
[69]Borhan M H,Holub E B,Beynon J L,et al. The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to albugo candida(white rust)and is dependent on EDS1 but not PAD4[J]. Molecular Plant-Microbe Interactionst,2004,17(7):711-719.
[70]Century M H,Holub E B,Beynon J L,et al. The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to albugo candida(white rust)and is resistance[J]. Science,1997,278(5345):1963-1965.
[71]Xiao S,Ellwood S,Calis O,et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8[J]. Science,2001,291(5501):118-120.
[72]Mengiste T,Chen X,Salmeron J,et al. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis[J]. Plant Cell,2003,15(11):2551-2565.
[73]Denby K J,Kumar P,Kliebenstein D J. Identification of botrytis cinerea susceptibility loci in Arabidopsis thaliana[J]. Plant Journal,2004,38(3):473-486.
[74]陈展. 拟南芥抗灰霉病相关基因AtBRG1的功能研究[D]. 保定:河北农业大学,2010:25-32.
[75]张孝峰. 番茄分子遗传图谱的构建及抗灰霉病QTL的定位[D]. 呼和浩特:内蒙古农业大学,2006:9-10.
[76]Tanksley S D,Ganal M W,Prince J P,et al. High density molecular linkage maps of the tomato and potato genomes[J]. Genetics,1992,132(4):1141-1160.
[77]Suliman-Pollatschek S,Kashkush K,Shats H,et al. Generation and mapping of AFLP,SSRs and SNPs in Lycopersicon esculentum[J]. Cellular & Molecular Biology Letters,2002,7(2A):583-597.
[78]Haymes K M,Henken B,Davis T M,et al. Identification of RAPD markers linked to a phytophthora fragaria resistance gene (Rpf1) in the cultivated strawberry[J]. Theor Appl Genet,1997,94:1097-1101.
[79]Lerceteau-Khler E,Guérin G,Denoyes-Rothan B. Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germ plasm[J]. Theoretical & Applied Genetics,2005,111(5):862-870.
[80]Sargent D J,Clarke J,Simpson D W,et al. An enhanced microsatellite map of diploid Fragaria[J]. Theoretical and Applied Genetics,2006,112(7):1349-1359.
[81]Jaillon O,Aury J M,Noel B,et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449(7161):463-467.
[82]Eckardt N A. The Arabidopsis RPW8 resistance protein is recruited to the extrahaustorial membrane of biotrophic powdery mildew fungi[J]. The plant cell online,2009,21(9):2543-2543.
[83]Wang L,Xie X Q,Yao W K,et al. RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A[J]. J Exp Bot,2017,68:1669-1687.
[84]Agurto M,Schlechter R O,Armijo G,et al. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. crimson seedless)displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator)[J]. Frontiers in Plant Science,2017,8(758):758.
[85]Agüero C B,Uratsu S L,Greve C,et al. Evaluation of tolerance to Pierces disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene[J]. Molecular Plant Pathology,2005,6(1).
[86]闫筱筱. 中国野生毛葡萄转录因子JAZ和TLP基因抗病功能研究[D]. 杨凌:西北农林科技大学,2018:13-39.
[87]张军辉. 葡萄灰霉病抗性QTL定位及候选基因研究[D]. 沈阳:沈阳农业大学,2018:13-26.
[88]蒋妮,白丹宇,宋利沙,等. 棘孢木霉F2菌株对三七灰霉病的生物防治作用[J]. 江苏农业科学,2018,46(20):94-97.
[89]张金云,王清羿. 切花月季品种的比较及其花枝生产规律的研究[J]. 安徽农业科学,2004,32(5):945-946.
[90]Govrin E M,Levine A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea[J]. Current Biology,2000,10(13):751-757.
[91]Ten H A,Breuil W,Wubben J P,et al. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues[J]. Fungal Genetics and Biology,2001,33(2):97-105.
[92]张真建,向贵生,陈敏,等. 月季黑斑病及其抗性研究进展[J]. 江苏农业科学,2019,47(5):78-84.
[93]纪程,邱显钦,张颢,等. 中国古老月季资源的白粉病抗性鉴定[J]. 北方园艺,2013(9):146-148.
[94]邱显钦. 月季抗白粉病基因Mlo的克隆和功能分析[D]. 武汉:华中农业大学,2015.
[95]周青. 高通量SSR标记开发及二倍体月季分子连锁图谱构建[D]. 武汉:华中农业大学,2014.
[96]于超. 四倍体月季遗传连锁图谱的构建及部分观赏性状的QTLs分析[D]. 北京:北京林业大学,2015.
[97]Kohorn B D. The state of cell wall pectin monitored by wall associated kinases:a model[J]. Plant Signaling & Behavior,2015,10(7):e1035854.
[98]Kanneganti V,Gupta A K. Wall associated kinases from plants—an overview[J]. Physiol Mol Biol Plant,2008,14(1/2):109-118.
[99]Thomma B P,Penninckx I A,Broekaert W F,et al. The complexity of disease signaling in Arabidopsis[J]. Current Opinion in Immunology,2001,13(1):63-68.
[100]陈宇飞,文景芝,李立军. 葡萄灰霉病研究进展[J]. 东北农业大学学报,2006,37(5):693-699.
[101]陈玉森,祁建民,方树民. 红麻灰霉菌生物学特性及其交叉感染[J]. 福建农林大学学报(自然科学版),2004,33(3):308-312.
[1]霍恒志,糜林,李金凤,等.草莓无害化栽培主要病害防治技术探讨[J].江苏农业科学,2013,41(04):115.
[2]朱丽梅,崔群香,蔡元琴,等.不同茄子品种田间病害调查及其抗病性鉴定[J].江苏农业科学,2013,41(06):96.
Zhu Limei,et al.Field investigation of disease and disease resistance identification of different eggplant varieties[J].Jiangsu Agricultural Sciences,2013,41(15):96.
[3]田连生,陈菲.木霉菌剂与多菌灵协同防治灰霉病试验[J].江苏农业科学,2013,41(12):132.
Tian Liansheng,et al.Application experiment of Trichoderma mixed with carbendazim controlling gray mold[J].Jiangsu Agricultural Sciences,2013,41(15):132.
[4]王晓峨,刘恩玲.壳聚糖-铜的抑菌性能[J].江苏农业科学,2015,43(04):160.
Wang Xiaoe,et al.Study on antifungal activity of chitosan-Cu[J].Jiangsu Agricultural Sciences,2015,43(15):160.
[5]牛贞福,徐金强,田召玲,等.诱抗剂对番茄植物学性状和灰霉病抗性的影响[J].江苏农业科学,2017,45(02):103.
Niu Zhenfu,et al.Effects of inducing agents on botanical characters and gray mold resistance of tomato[J].Jiangsu Agricultural Sciences,2017,45(15):103.
[6]向贵生,张真建,王其刚,等.月季白粉病及其抗性研究进展[J].江苏农业科学,2017,45(10):9.
Xiang Guisheng,et al.Research progress of Chinese rose powdery mildew and its resistance[J].Jiangsu Agricultural Sciences,2017,45(15):9.
[7]叶嘉,张倩茹,张浩.苦参生物碱对黄瓜幼苗灰霉病防治效果研究[J].江苏农业科学,2018,46(08):105.
Ye Jia,et al.Controlling effect of matrine on Botrytis cinerea in Cucumis sativus seedling[J].Jiangsu Agricultural Sciences,2018,46(15):105.
[8]蒋妮,白丹宇,宋利沙,等.棘孢木霉F2菌株对三七灰霉病的生物防治作用[J].江苏农业科学,2018,46(20):94.
Jiang Ni,et al.Biological control effect of Trichoderma asperellum F2 on Panax notoginseng grey mould[J].Jiangsu Agricultural Sciences,2018,46(15):94.
[9]王珊珊,乜兰春,李潘,等.植物病原真菌毒素的分类、致病机制及应用前景[J].江苏农业科学,2019,47(03):94.
Wang Shanshan,et al.Classification,pathogenesis and application prospects of plant pathogenic fungi toxin[J].Jiangsu Agricultural Sciences,2019,47(15):94.
[10]张悦,施维,李丹,等.禾谷镰刀菌全基因组候选效应因子预测与分析[J].江苏农业科学,2019,47(06):81.
Zhang Yue,et al.Analysis of candidate effectors from genome of Fusarium graminearum[J].Jiangsu Agricultural Sciences,2019,47(15):81.