[1]冯占山,高世杰. 农业可持续发展与农作物病害的持续控制[J]. 现代化农业,2013(3):5-6.
[2]姜玉英,刘万才,黄冲,等. 2019全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊,2019,39(2):36-39.
[3]王彦翔,张艳,杨成娅,等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报,2019,31(4):669-676.
[4]Raza S E A,Gillian P,Clarkson J P,et al. Automatic detection of diseased tomato plants using thermal and stereo visible light images[J]. PLoS One,2015,10(4):e0123262.
[5]Zhao Y R,Li X L,Yu K Q,et al. Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease[J]. Scientific Reports,2016,6:27790.
[6]Piyush P,Yufeng G,Vincent S,et al. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging[J]. Frontiers in Plant Science,2017,8:1348.
[7]Zhu H Y,Chu B Q,Zhang C,et al. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers[J]. Scientific Reports,2017,7(1):4125.
[8]余秀丽,徐超,王丹丹,等. 基于SVM的小麦叶部病害识别方法研究[J]. 农机化研究,2014,36(11):151-155,159.
[9]牛冲,牛昱光,李寒,等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学,2017,45(4):169-172.
[10]贾少鹏,高红菊,杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报,2019,50(增刊):313-317.
[11]Liu W,Anguelov D,Erhan D,et al. SSD:single shot multiBox detector[M]// Leibe B,Matas J,Sebe N,et al. Computer Vision-ECCV 2016. Cham:Springer,2016:21-37.
[12]Huang G,Liu Z,Van Der Maaten,et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017:2261-2269.
[13]张善文,谢泽奇,张晴晴. 卷积神经网络在黄瓜叶部病害识别中的应用[J]. 江苏农业学报,2018,34(1):56-61.
[14]Amara J,Bouaziz B,Algergawy A. A deep learning-based approach for banana leaf diseases classification[C]//Datenbanksysteme für Business,Technologie und Web (BTW 2017),17. Fachtagung des GI-Fachbereichs,Datenbanken und Informationssysteme (DBIS),Stuttgart,Germany,Workshopband, 2017.
[15]孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.
[16]Mohanty S P,Hughes D P,Salathé Marcel. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science,2016,7:1419.
[17]Ramcharan A,Baranowski K,McCloskey P,et al. Deep learning for image-based cassava disease detection[J]. Frontiers in Plant Science,2017,8:1852.
[18]黄双萍,孙超,齐龙,等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报,2017,33(20):169-176.
[19]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[20]Brahimi M,Kamel B,Moussaoui A. Deep learning for tomato diseases:classification and symptoms visualization[J]. Applied Artificial Intelligence,2017,31(4):299-315.
[21]刘阗宇,冯全,杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报,2018,49(3):73-83.
[22]廖经纬,蔡英,王语晨,等. 基于卷积神经网络的植物病害识别技术[J]. 现代计算机(专业版),2018(19):43-48,53.
[23]张敏,刘杰,蔡高勇. 基于卷积神经网络的柑橘溃疡病识别方法[J]. 计算机应用,2018,38(增刊1):48-52,76.
[24]张航,程清,武英洁,等. 一种基于卷积神经网络的小麦病害识别方法[J]. 山东农业科学,2018,50(3):137-141.
[25]刘瑾蓉,林剑辉,李婷婷. 基于卷积神经网络的银杏叶片患病程度识别[J]. 中国农业科技导报,2018,20(6):55-61.
[26]李敬. 基于卷积神经网络的烟草病害自动识别研究[D]. 泰安:山东农业大学,2016.
[27]赵建敏,李艳,李琦,等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学,2018,46(24):251-255.
[28]谭云兰,欧阳春娟,李龙,等. 基于深度卷积神经网络的水稻病害图像识别研究[J]. 井冈山大学学报(自然科学版),2019,40(2):31-38.
[29]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报,2018,34(18):194-201.
[30]杨晋丹,杨涛,苗腾,等. 基于卷积神经网络的草莓叶部白粉病病害识别[J]. 江苏农业学报,2018,34(3):527-532.
[31]张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报,2018,23(11):161-171.
[32]蔡汉明,随玉腾,张镇,等. 基于深度可分离卷积神经网络的农作物病害识别方法[J]. 安徽农业科学,2019,47(11):244-246,252.
[33]王振,张善文,王献锋. 基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J]. 江苏农业学报,2019,35(5):1054-1060.
[34]He K M,Zhang X Y,Ren S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):1904-1916.
[35]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1109-1122.
[36]Dai J F,Li Y,He K M,et al. R-FCN:object detection via region-based fully convolutional networks[R]. arXiv:Computer Vision and Pattern Recognition,2016.
[37]Brock A,Donahue J,Simonyan K,et al. Large scale GAN training for high fidelity natural image synthesis[R]. arXiv:Learning,2018.
[38]Radford A,Metz L,Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2020-01-03].http://arxiv.org/abs/1511.06434.
[1]徐欣,刘宝锺.基于改进Prewitt算子的农业图像去噪算法[J].江苏农业科学,2016,44(01):406.
Xu Xin,etal.Agricultural image denoising algorithm based on improved Prewitt operator[J].Jiangsu Agricultural Sciences,2016,44(22):406.
[2]陈光绒,李小琴.基于物联网技术的农作物病虫害自动测报系统[J].江苏农业科学,2015,43(04):406.
Chen Guangrong,et al.Automatic measuring and reporting system for crop diseases and insect pests based on internet of things[J].Jiangsu Agricultural Sciences,2015,43(22):406.
[3]郑颖,金松林,张自阳,等.基于领域本体的农作物病虫害问题分类研究[J].江苏农业科学,2016,44(09):145.
Zheng Ying,et al.Study on crop diseases and insect pests question classification based on domain ontology[J].Jiangsu Agricultural Sciences,2016,44(22):145.
[4]曹卫锋,袁万宾,刁智华,等.基于图像的小麦白粉病病斑形状演变规律[J].江苏农业科学,2019,47(18):132.
Cao Weifeng,et al.Study on evolution trend of wheat powdery mildew spot shape based on image[J].Jiangsu Agricultural Sciences,2019,47(22):132.
[5]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(22):156.
[6]徐重新,张江兆,胡晓丹,等.农药联合复配在农作物病虫害防治上的研究进展[J].江苏农业科学,2023,51(4):8.
Xu Chongxin,et al.Research progress of pesticide combination in crop diseases and insect pests control[J].Jiangsu Agricultural Sciences,2023,51(22):8.
[7]李子涵,周省邦,赵戈,等.基于卷积神经网络的农业病虫害识别研究综述[J].江苏农业科学,2023,51(7):15.
Li Zihan,et al.Study on agricultural pest identification based on convolutional neural network: a review[J].Jiangsu Agricultural Sciences,2023,51(22):15.
[8]王洪波,杨永政,谢志成,等.基于Res-Inception的农作物病虫害识别技术[J].江苏农业科学,2024,52(20):181.
Wang Hongbo,et al.Crop diseases and pests identification technology based on Res-Inception[J].Jiangsu Agricultural Sciences,2024,52(22):181.
[9]顾洁,缪艺缘,高尚,等.针对多农作物病虫害的一种深度细粒度识别方法[J].江苏农业科学,2025,53(5):258.
Gu Jie,et al.A deep fine-grained recognition method for multi-crop diseases and pests[J].Jiangsu Agricultural Sciences,2025,53(22):258.