[1]Tai A P K,Martin M V,Heald C L. Threat to future global food security from climate change and ozone air pollution[J]. Nature Climate Change,2014,4(9):817-821.
[2]姜玉英,刘万才,黄冲,等. 2020 年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊,2020,40(2):37-39.
[3]张琦,张荣梅,陈彬. 基于深度学习的图像识别技术研究综述[J]. 河北省科学院学报,2019,36(3):28-36.
[4]Swietojanski P,Ghoshal A,Renals S. Convolutional neural networks for distant speech recognition[J]. IEEE Signal Processing Letters,2014,21(9):1120-1124.
[5]田海韬,赵军,蒲富鹏. 马铃薯芽眼图像的分割与定位方法[J]. 浙江农业学报,2016,28(11):1947-1953.
[6]郭小清,范涛杰,舒欣. 基于图像融合特征的番茄叶部病害的识别[J]. 湖南农业大学学报(自然科学版),2019,45(2):212-217,224.
[7]曾伟辉,李淼,张健,等. 面向农作物病害识别的高阶残差卷积神经网络研究[J]. 中国科学技术大学学报,2019,49(10):781-790.
[8]张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报,2018,23(11):161-171.
[9]Lee S H,Chan C S,Mayo S J,et al. How deep learing extracts and learns leaf features for plant classification[J]. Pattren Recognition,2017,71:1-13.
[10]余小东,杨孟辑,张海清,等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报,2020,51(10):252-258.
[11]Tan C,Sun F,Kong T,et al. A survey on deep transfer learning[C]//27 International Conference on Artificial Neural Networks and Machine Learning-ICANN 2018. Rhodes,Greece,2018:270-279.
[12]闫壮壮,闫学慧,石嘉,等. 基于深度学习的大豆豆荚类别识别研究[J]. 作物学报,2020,46(11):1771-1779.
[13]刘嘉政. 基于深度迁移学习模型的花卉种类识别[J]. 江苏农业科学,2019,47(20):231-236.
[14]龙明盛. 迁移学习问题与方法研究[D]. 北京:清华大学,2014:34-89.
[15]Krizhevsky A,Sutskever I,Hinton G E. ImageNet classification with deep convolutional neural networks[M]. Hinton E. Communications of the ACM,2017:6
[16]Jang Y H,Lee H,Hwang S J,et al. Learning what and where to transfer[C]. Proceeding of the 36th International Conference on Machine Learning,2019:3030-3039.
[17]白洁,张金松,刘倩宇. 基于卷积网络特征迁移的小样本物体图像识别[J]. 计算机仿真,2020,37(5):311-316.
[18]Huang G,Liu Z,Maaten L D,et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii,USA,2017:2261-2269.
[19]赵建敏,李艳,李琦,等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学,2018,46(24):251-255.
[20]梁万杰,曹宏鑫. 基于卷积神经网络的水稻虫害识别[J]. 江苏农业科学,2017,45(20):241-243,253.
[1]陈光绒,李小琴.基于物联网技术的农作物病虫害自动测报系统[J].江苏农业科学,2015,43(04):406.
Chen Guangrong,et al.Automatic measuring and reporting system for crop diseases and insect pests based on internet of things[J].Jiangsu Agricultural Sciences,2015,43(12):406.
[2]郑颖,金松林,张自阳,等.基于领域本体的农作物病虫害问题分类研究[J].江苏农业科学,2016,44(09):145.
Zheng Ying,et al.Study on crop diseases and insect pests question classification based on domain ontology[J].Jiangsu Agricultural Sciences,2016,44(12):145.
[3]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(12):22.
[4]徐重新,张江兆,胡晓丹,等.农药联合复配在农作物病虫害防治上的研究进展[J].江苏农业科学,2023,51(4):8.
Xu Chongxin,et al.Research progress of pesticide combination in crop diseases and insect pests control[J].Jiangsu Agricultural Sciences,2023,51(12):8.
[5]李子涵,周省邦,赵戈,等.基于卷积神经网络的农业病虫害识别研究综述[J].江苏农业科学,2023,51(7):15.
Li Zihan,et al.Study on agricultural pest identification based on convolutional neural network: a review[J].Jiangsu Agricultural Sciences,2023,51(12):15.
[6]王洪波,杨永政,谢志成,等.基于Res-Inception的农作物病虫害识别技术[J].江苏农业科学,2024,52(20):181.
Wang Hongbo,et al.Crop diseases and pests identification technology based on Res-Inception[J].Jiangsu Agricultural Sciences,2024,52(12):181.
[7]顾洁,缪艺缘,高尚,等.针对多农作物病虫害的一种深度细粒度识别方法[J].江苏农业科学,2025,53(5):258.
Gu Jie,et al.A deep fine-grained recognition method for multi-crop diseases and pests[J].Jiangsu Agricultural Sciences,2025,53(12):258.