[1]Kaur S,Pandey S,Goel S. Plants disease identification and classification through leaf images:a survey[J]. Archives of Computational Methods in Engineering,2019,26(2):507-530.
[2]翟肇裕,曹益飞,徐焕良,等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报,2021,52(7):1-18.
[3]Strange R N,Scott P R. Plant disease:a threat to global food security[J]. Annual Review of Phytopathology,2005,43:83-116.
[4]Iqbal Z,Khan M A,Sharif M,et al. An automated detection and classification of citrus plant diseases using image processing techniques:a review[J]. Computers and Electronics in Agriculture,2018,153:12-32.
[5]Mahlein A K. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant Disease,2016,100(2):241-251.
[6]Liu J,Wang X W. Plant diseases and pests detection based on deep learning:a review[J]. Plant Methods,2021,17(1):22.
[7]孙红,李松,李民赞,等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报,2020,51(5):1-17.
[8]Abade A,Ferreira P A,de Barros V F. Plant diseases recognition on images using convolutional neural networks:a systematic review[J]. Computers and Electronics in Agriculture,2021,185:106125.
[9]Lu J Z,Tan L J,Jiang H Y. Review on convolutional neural network (CNN) applied to plant leaf disease classification[J]. Agriculture,2021,11(8):707.
[10]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[11]黄建平,陈镜旭,李克新,等. 基于神经结构搜索的多种植物叶片病害识别[J]. 农业工程学报,2020,36(16):166-173.
[12]Argüeso D,Picon A,Irusta U,et al. Few-shot learning approach for plant disease classification using images taken in the field[J]. Computers and Electronics in Agriculture,2020,175:105542.
[13]Li Y,Chao X W. Semi-supervised few-shot learning approach for plant diseases recognition[J]. Plant Methods,2021,17(1):68.
[14]Vinyals O,Blundell C,Lillicrap T P,et al. Matching networks for one shot learning[C]//NeurIPS16:Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona,Spain:ACM,2016:3630-3638.
[15]Snell J,Swersky K,Zemel R S. Prototypical networks for few-shot learning[C]//NeurIPS17:Proceedings of the 31st International Conference on Neural Information Processing Systems(NeurIPS). Long Beach:ACM,2017:4077-4087.
[16]刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报,2021,47(2):297-315.
[17]赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报,2021,32(2):349-369.
[18]Zhu X J,Goldberg A B. Introduction to semi-supervised learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning,2009,3(1):1-130.
[19]Goodfellow I,Pouget-Abadie J,Mirza M,et al. Generative adversarial networks[J]. Communications of the ACM,2020,63(11):139-144.
[20]Pan S J,Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[21]Hariharan B,Girshick R. Low-shot visual recognition by shrinking and hallucinating features[C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:3037-3046.
[22]Qi H,Brown M,Lowe D G. Low-shot learning with imprinted weights[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:5822-5830.
[23]Finn C,Abbeel P,Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//ICML17:Proceedings of the 34th International Conference on Machine Learning-Volume 70.2017:1126-1135.
[24]Li Z G,Zhou F W,Chen F,et al. Meta-SGD:learning to learn quickly for few-shot learning[EB/OL]. [2021-04-07]. https://arxiv.org/abs/1707.09835.
[25]Nichol A,Achiam J,Schulman J. On first-order meta-learning algorithms[EB/OL]. [2021-04-07]. https://arxiv.org/abs/1803.02999.
[26]Wang B,Wang D. Plant leaves classification:a few-shot learning method based on Siamese network[J]. IEEE Access,2019,7:151754-151763.
[27]Yu H J,Son C H. Leaf spot attention network for apple leaf disease identification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle:IEEE,2020:229-237.
[28]Hu G S,Wu H Y,Zhang Y,et al. A low shot learning method for tea leafs disease identification[J]. Computers and Electronics in Agriculture,2019,163:104852.
[29]谢军,江朝晖,李博,等. 基于二次迁移模型的小样本茶树病害识别[J]. 江苏农业科学,2021,49(6):176-182.
[30]周志华. 机器学习 [M]. 北京:清华大学出版社,2016.
[31]Wang Y K,Xu C M,Liu C,et al. Instance credibility inference for few-shot learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle:IEEE,2020:12833-12842.
[32]Fan J Q,Tang R L,Shi X F.Partial consistency with sparse incidental parameters[J]. Statistica Sinica,2018,28:2633-2655.
[33]Simon N,Friedman J,Hastie T. A blockwise descent algorithm for group-penalized multiresponse and multinomial regression[EB/OL]. [2021-04-07]. https://arxiv.org/abs/1311.6529.
[34]Oreshkin B N,Rodriguez P,Lacoste A. Tadam:Task dependent adaptive metric for improved few-shot learning[C]//NeurIPS 18:Proceedings of the 32st International Conference on Neural Information Processing Systems. Montréal:ACM,2018:719-729.
[35]Mishra N,Rohaninejad M,Chen X,et al. A simple neural attentive meta-learner[C]//ICLR 2018. Vancouver,2018.
[36]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[37]Joachims T. Transductive inference for text classification using support vector machines[C]//ICML 1999:Proceedings of the 16th International Conference on Machine Learning. Bled,1999:200-209.
[38]Vapnik V. Transductive inference and semi-supervised learning [J]. Semi-Supervised Learning. Cambridge:MIT Press,2006:453-472.
[1]马国胜,陈娟,薛毅.苏南地区绿篱病害发生规律与生态控制技术[J].江苏农业科学,2013,41(11):131.
Ma Guosheng,et al.Occurrence and eco-control technology of hedgerow diseases in Southern Jiangsu[J].Jiangsu Agricultural Sciences,2013,41(12):131.
[2]易龙,张亚,廖晓兰,等.链霉菌防治植物病害的研究进展[J].江苏农业科学,2014,42(03):91.
Yi Long,et al.Research progress of streptomyces controlling plant diseases[J].Jiangsu Agricultural Sciences,2014,42(12):91.
[3]王超,郭坚华,席运官,等.拮抗细菌在植物病害生物防治中应用的研究进展[J].江苏农业科学,2017,45(18):1.
Wang Chao,et al.Research progress on application of antagonistic bacteria in biological control of plant diseases[J].Jiangsu Agricultural Sciences,2017,45(12):1.
[4]宋薇薇,朱辉,余凤玉,等.植物内生菌及其对植物病害的防治作用综述[J].江苏农业科学,2018,46(06):12.
Song Weiwei,et al.Plant endophytes and their control effects on plant diseases:a review[J].Jiangsu Agricultural Sciences,2018,46(12):12.
[5]何宇,吕卫光,张娟琴,等.生防菌对稻瘟病害控制的研究进展[J].江苏农业科学,2021,49(21):40.
He Yu,et al.Research progress of biocontrol bacteria controlling rice blast disease[J].Jiangsu Agricultural Sciences,2021,49(12):40.
[6]杨祥,段军明,董明刚.面向移动端的植物病害图像识别方法及其应用[J].江苏农业科学,2023,51(4):191.
Yang Xiang,et al.Mobile-oriented plant disease image recognition method and its application[J].Jiangsu Agricultural Sciences,2023,51(12):191.
[7]代国威,胡林,樊景超,等.基于GLCM特征提取和投票分类模型的马铃薯早、晚疫病检测[J].江苏农业科学,2023,51(8):185.
Dai Guowei,et al.Detection of potato early and late blight based on GLCM feature extraction and voting classification model[J].Jiangsu Agricultural Sciences,2023,51(12):185.
[8]郑旭康,李志忠,秦俊豪.基于半监督学习的梨叶病害检测[J].江苏农业科学,2024,52(5):192.
Zheng Xukang,et al.Study on pear leaf disease detection based on semi-supervised learning[J].Jiangsu Agricultural Sciences,2024,52(12):192.
[9]严露露,朱赞彬,冯世杰,等.基于改进FixMatch算法的半监督番茄病虫害识别[J].江苏农业科学,2024,52(20):244.
Yan Lulu,et al.Semi-supervised identification of tomato diseases and pests based on improved FixMatch algorithm[J].Jiangsu Agricultural Sciences,2024,52(12):244.