[1]Rahman C R,Arko P S,Ali M E,et al. Identification and recognition of rice diseases and pests using convolutional neural networks[J]. Biosystems Engineering,2020,194:112-120.
[2]Xing S L,Lee M,Lee K K. Citrus pests and diseases recognition model using weakly dense connected convolution network[J]. Sensors,2019,19(14):3195.
[3]Pan W Y,Qin J H,Xiang X Y,et al. A smart mobile diagnosis system for citrus diseases based on densely connected convolutional networks[J]. IEEE Access,2019(7):87534-87542.
[4]吴翔. 基于机器视觉的害虫识别方法研究[D]. 杭州:浙江大学,2016.
[5]谢成军,李瑞,董伟,等. 基于稀疏编码金字塔模型的农田害虫图像识别[J]. 农业工程学报,2016,32(17):144-151.
[6]梁万杰,曹宏鑫. 基于卷积神经网络的水稻虫害识别[J]. 江苏农业科学,2017,45(20):241-243,253.
[7]周爱明. 基于深度学习的农业灯诱害虫自动识别与计数技术的研究[D]. 杭州:浙江理工大学,2019.
[8]Song Y Y,Duan X Y,Ren Y,et al. Identification of the agricultural pests based on deep learning models[C]//International Conference on Machine Learning,Big Data and Business Intelligence. Taiyuan:IEEE,2019.
[9]Thenmozhi K,Srinivasulu R U. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture,2019,164:104906.
[10]Nanni L,Maguolo G,Pancino F. Insect pest image detection and recognition based on bio-inspired methods[J]. Ecological Informatics,2020,57:101089.
[11]丁永军,张晶晶,李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报,2020,51(12):246-251.
[12]李静,陈桂芬,安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报,2020,41(3):110-116.
[13]Wu X P,Zhan C,Lai Y K,et al. IP102:a large-scale benchmark dataset for insect pest recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019.
[14]Iqbal Z,Khan M A,Sharif M,et al. An automated detection and classification of citrus plant diseases using image processing techniques:a review[J]. Computers and Electronics in Agriculture,2018,153:12-32.
[15]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016.
[16]谢军,江朝晖,李博,等. 基于二次迁移模型的小样本茶树病害识别[J]. 江苏农业科学,2021,49(6):176-182.
[17]Dong Z Y,Lin S. Research on image classification based on CapsNet[C]//IEEE 4th Advanced Information Technology,Electronic and Automation Control Conference.Chengdu:IEEE,2019.
[18]Choi J,Seo H,Im S,et al. Attention routing between capsules[C]//IEEE/CVF International Conference on Computer Vision Workshop.Seoul:IEEE,2019.
[19]Jampour M,Abbaasi S,Javidi M. CapsNet regularization and its conjugation with ResNet for signature identification[J]. Pattern Recognition,2021,120:107851.
[20]Zomahoun D E. A semantic collaborative clustering approach based on confusion matrix[C]//15th International Conference on Signal-Image Technology & Internet-Based Systems.Sorrento:IEEE,2019.
[21]Malek M A,Reya S S,Hasan M Z,et al. A crop pest classification model using deep learning techniques[C]//2nd International Conference on Robotics,Electrical and Signal Processing Techniques.Dhaka:IEEE,2021.
[22]Stursa D,Dolezel P. Comparison of ReLU and linear saturated activation functions in neural network for universal approximation[C]//22nd International Conference on Process Control (PC19).Strbske Pleso:IEEE,2019.
[1]谢军,江朝晖,李博,等.基于二次迁移模型的小样本茶树病害识别[J].江苏农业科学,2021,49(6):176.
Xie Jun,et al.Image recognition of tea plant disease small samples based on secondary migration model[J].Jiangsu Agricultural Sciences,2021,49(14):176.
[2]戴久竣,马肄恒,吴坚,等.基于改进残差网络的葡萄叶片病害识别[J].江苏农业科学,2023,51(5):208.
Dai Jiujun,et al.Grape leaf disease identification based on improved residual network[J].Jiangsu Agricultural Sciences,2023,51(14):208.
[3]鲍浩,张艳.基于注意力机制与改进残差模块的豆叶病害识别[J].江苏农业科学,2023,51(16):187.
Bao Hao,et al.Bean leaf disease identification based on attention mechanism and improved residual module[J].Jiangsu Agricultural Sciences,2023,51(14):187.
[4]吴刚正,蔡成岗,朱瑞瑜.基于注意力机制和残差网络的苹果叶片病害分类[J].江苏农业科学,2023,51(18):177.
Wu Gangzheng,et al.Apple leaf disease classification based on attention mechanism and residual network[J].Jiangsu Agricultural Sciences,2023,51(14):177.
[5]李军,李志伟,李艳红.基于多原型指导的小样本水稻害虫识别与分类[J].江苏农业科学,2023,51(20):193.
Li Jun,et al.Recognition and classification of rice pests in small samples based on multi-prototype guidance[J].Jiangsu Agricultural Sciences,2023,51(14):193.
[6]吴子炜,夏芳,陆林峰,等.基于改进YOLO v5的水稻主要害虫识别方法[J].江苏农业科学,2023,51(21):218.
Wu Ziwei,et al.An identification method for rice major pests based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2023,51(14):218.
[7]江顺,黄红星,莫里楠,等.基于改进AlexNet的岭南水稻虫害识别方法研究[J].江苏农业科学,2023,51(23):187.
Jiang Shun,et al.Study on identification method of Lingnan rice pests based on improved AlexNet[J].Jiangsu Agricultural Sciences,2023,51(14):187.
[8]肖天赐,陈燕红,李永可,等.基于改进通道注意力机制的农作物病害识别模型研究[J].江苏农业科学,2023,51(24):168.
Xiao Tianci,et al.Study on crop disease identification model based on improved channel attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(14):168.
[9]黄英来,王奇,何少聪,等.基于改进ResNet101的黄瓜害虫识别方法研究[J].江苏农业科学,2025,53(5):203.
Huang Yinglai,et al.Study on identification method for cucumber pests based on improved ResNet101[J].Jiangsu Agricultural Sciences,2025,53(14):203.