|本期目录/Table of Contents|

[1]杜龙龙,王荣扬,陆学斌,等.面向灌木型白茶叶面积密度的双源点云激光协同反演方法[J].江苏农业科学,2022,50(24):160-168.
 Du Longlong,et al.A dual-source point cloud laser collaborative inversion method for shrubby white tea area density[J].Jiangsu Agricultural Sciences,2022,50(24):160-168.
点击复制

面向灌木型白茶叶面积密度的双源点云激光协同反演方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第24期
页码:
160-168
栏目:
农业工程与信息技术
出版日期:
2022-12-20

文章信息/Info

Title:
A dual-source point cloud laser collaborative inversion method for shrubby white tea area density
作者:
杜龙龙1王荣扬12陆学斌1于斌3
1.湖州职业技术学院,浙江湖州 313000; 2.湖州市机器人系统集成与智能装备重点实验室,浙江湖州 313000;3.哈尔滨理工大学,黑龙江哈尔滨 150000
Author(s):
Du Longlonget al
关键词:
灌木型白茶机载激光雷达地基激光雷达反演叶面积密度冠层分析法
Keywords:
-
分类号:
S127
DOI:
-
文献标志码:
A
摘要:
为提高白茶叶面积密度(leaf area density,LAD)的反演精度,以浙江省安吉县昆铜乡茶场的茶树为研究对象,利用无人机激光雷达和地基激光雷达对白茶茶树的冠层点云信息进行提取,对比几种常见的点云分割算法,选择效果最好的随机森林算法将提取的点云信息进行枝叶分离,并对冠层点云进行体元建模,探究白茶茶树最优体元和激光接触频率的相关性,采用冠层分析法分别对机载和地基数据绘制LAD曲线,通过盲区互补实现LAD的双源协同反演。结果表明,运用冠层分析法适用于估算灌木型白茶茶树的叶面积密度,机载点云数据和地基点云数据协同估算精度最高(R2=0.930~0.963),地基数据估算精度次之(R2=0.824~0.933),机载数据估算精度最低(R2=0.693~0838)。因此,机载和基地协同反演可以提升白茶茶树LAD的估算精度,进而为进一步研究灌木型作物的理化参数提供数据基础。
Abstract:
-

参考文献/References:

[1]赵静,李静,柳钦火. 森林垂直结构参数遥感反演综述[J]. 遥感学报,2013,17(4):697-716.
[2]庄永健,冯仲科,李亚藏,等. 激光雷达技术测树方法原理与应用[J]. 林业资源管理,2016(6):116-119.
[3]郭庆华,苏艳军,胡天宇. 激光雷达森林生态应用:理论、方法及实例[M]. 北京:高等教育出版社,2018.
[4]Hosoi F,Ueno S,Mizuki S,et al. Estimation of leaf area density profiles of Ginkgo trees by the ground and high position measurements using a portable scanning lidar[J]. Eco-Engineering,2014,26(2):45-49.
[5]Béland M,Baldocchi D D,Widlowski J L,et al. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR[J]. Agricultural and Forest Meteorology,2014,184:82-97.
[6]Wu D,Phinn S,Johansen K,et al. Estimating changes in leaf area,leaf area density,and vertical leaf area profile for mango,avocado,and Macadamia tree crowns using terrestrial laser scanning[J]. Remote Sensing,2018,10(11):1750.
[7]赵方博,王佳,高赫,等. 地面激光雷达的单木真实叶面积指数提取[J]. 测绘科学,2019,44(4):81-86,109.
[8]雷蕾,邱春霞,杨浩,等. 基于背包LiDAR的苹果树叶面积密度反演研究[J]. 信息技术与信息化,2019(10):202-205.
[9]Lovell J L,Jupp D L B,Culvenor D S,et al. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests[J]. Canadian Journal of Remote Sensing,2003,29(5):607-622.
[10]Hosoi F,Nakai Y,Omasa K. Estimation and error analysis of woody canopy leaf area density profiles using 3-D airborne and ground-based scanning lidar remote-sensing techniques[J]. IEEE Transactions on Geoscience & Remote Sensing,2010,48(5):2215-2223.
[11]Dutta D,Wang K,Lee E,et al. Characterizing vegetation canopy structure using airborne remote sensing data[J]. IEEE Transactions on Geoscience & Remote Sensing,2017,55(2):1160-1178.
[12]戴雷宇. 基于地基与机载LiDAR数据的阔叶林LAD反演[D]. 成都:电子科技大学,2019:58-65.
[13]马秦靖,闫秀婧,刘李姣,等. 基于随机森林算法的林区环境因子异常检测[J]. 林业科技通讯,2021(6):49-52.
[14]孙圆,林秀云,熊金鑫,等. 基于地面激光强度校正数据的单木枝叶分离[J]. 中国激光,2021,48(1):56-66.
[15]巴比尔江·迪力夏提,玉米提·哈力克,艾萨迪拉·玉苏甫,等. 应用地基激光雷达数据估算塔里木河下游胡杨叶面积指数[J]. 东北林业大学学报,2020,48(11):46-50.
[16]Jiapaer G,Yi Q X,Yao F,et al. Comparison of non-destructive LAI determination methods and optimization of sampling schemes in an open Populus euphratica ecosystem[J]. Urban Forestry & Urban Greening,2017,26:114-123.
[17]刘盈,吕开云. 基于四参数-ICP的点云配准研究[J]. 江西测绘,2018(2):61-64.
[18]Kaneko S,Kondo T,Miyamoto A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation[J]. Pattern Recognition,2003,36(9):2041-2047.
[19]Bergstrm P. Reliable updates of the transformation in the iterative closest point algorithm[J]. Computational Optimization and Applications,2016,63(2):543-557.
[20]Li S H,Dai L Y,Wang H S,et al. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model[J]. Remote Sensing,2017,9(11):1202.
[21]王丽英,王圣,李玉. 强度体元基元下的机载LiDAR 3D滤波[J]. 地球信息科学学报,2019,21(12):1945-1954.
[22]Luo S Z,Wang C,Pan F F,et al. Estimation of wetland vegetation height and leaf area index using airborne laser scanning data[J]. Ecological Indicators,2015,48:550-559.
[23]Zheng G,Moskal L M. Computational-geometry-based retrieval of effective leaf area index using terrestrial laser scanning[J]. Transactions on Geoscience and Remote Sensing,2012,50(10):3958-3969.
[24]Lei L,Qiu C X,Li Z H,et al. Effect of leaf occlusion on leaf area index inversion of maize using UAV-LiDAR data[J]. Remote Sensing,2019,11(9):1067.
[25]Luo S Z,Chen J M,Wang C,et al. Comparative performances of airborne LiDAR height and intensity data for leaf area index estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(1):300-310.
[25]骆社周,王成,张贵宾,等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报,2013,56(5):1467-1475.
[26]刘远,周买春. 遥感反演植被叶面积指数的不确定性来源综述[J]. 江苏农业科学,2017,45(12):12-19.
[27]田罗,屈永华,Lauri K,等. 考虑目标光谱差异的机载离散激光雷达叶面积指数反演[J]. 遥感学报,2020,24(12):1450-1463.
[28]Cifuentes R,van der Zande D,Farifteh J,et al. Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data[J]. Agricultural and Forest Meteorology,2014,194:230-240.

相似文献/References:

[1]陈洪,赵庆展,李沛婷.无校正点的机载LiDAR农作物点云数据精度评价[J].江苏农业科学,2018,46(12):179.
 Chen Hong,et al.Accuracy evaluation of airborne LiDAR crop cloud data without correction points[J].Jiangsu Agricultural Sciences,2018,46(24):179.

备注/Memo

备注/Memo:
收稿日期:2022-02-22
基金项目:国家自然科学基金(编号:52105283);黑龙江省自然科学基金面上项目(编号:F2018018);浙江省湖州市自然科学基金(编号:2021YZ15)。
作者简介:杜龙龙(1989—),男,浙江湖州人,硕士,讲师,主要从事应用激光、农业信息化研究。E-mail:386808700@qq.com。
更新日期/Last Update: 2022-12-20