|本期目录/Table of Contents|

[1]杨祥,段军明,董明刚.面向移动端的植物病害图像识别方法及其应用[J].江苏农业科学,2023,51(4):191-197.
 Yang Xiang,et al.Mobile-oriented plant disease image recognition method and its application[J].Jiangsu Agricultural Sciences,2023,51(4):191-197.
点击复制

面向移动端的植物病害图像识别方法及其应用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第4期
页码:
191-197
栏目:
农业工程与信息技术
出版日期:
2023-02-20

文章信息/Info

Title:
Mobile-oriented plant disease image recognition method and its application
作者:
杨祥 段军明 董明刚
桂林理工大学信息科学与工程学院,广西桂林 541000
Author(s):
Yang Xianget al
关键词:
卷积神经网络植物病害ShuffleNet V2图像识别CSPNetECA
Keywords:
-
分类号:
TP183;TP391.41
DOI:
-
文献标志码:
A
摘要:
针对传统卷积神经网络(CNN)在病害图像识别时需要较高的存储空间和计算资源问题,提出一种基于轻量级CNN植物病害图像识别网络CSP-ShuffleNet V2来降低识别成本。CSP-ShuffleNet V2模型基于ShuffleNet V2网络,首先,将卷积核大小由3×3改为5×5扩大病斑图像全局感受野;其次,采用CSPNet结构来改进网络特征层;最后,再引入通道注意力(ECA)模块用于增强图像病斑通道特征信息。采用AI Challenger平台提供的公共植物病害数据集进行训练和测试。试验结果表明,CSP-ShuffleNet V2网络模型识别准确率为90.34%,比原始ShuffleNet V2网络模型提高2.23%,参数量也减少29.6%,权重大小仅为13.5 MB。与ResNet50、MobileNet V2、GoogleNet、DenseNet121网络相比,CSP-ShuffleNet V2网络不仅降低了网络计算量和参数量,而且收敛速度更快、分类效果更好。最终将模型离线部署在Android平台实现了植物病害移动端智能检测,为植物病害防治和诊断提供参考依据。
Abstract:
-

参考文献/References:

[1]孙云云,江朝晖,董伟,等. 基于卷积神经网络和小样本的茶树病害图像识别[J]. 江苏农业学报,2019,35(1):48-55.
[2]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报,2020,51(2):230-236,253.
[3]宋晨勇,白皓然,孙伟浩,等. 基于GoogLeNet改进模型的苹果叶病诊断系统设计[J]. 中国农机化学报,2021,42(7):148-155.
[4]刘翱宇,吴云志,朱小宁,等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报,2021,37(1):67-74.
[5]Pydipati R,Burks T F,Lee W S.Identification of citrus disease using color texture features and discriminant analysis[J]. Computers and Electronics in Agriculture,2006,52(1/2):49-59.
[6]Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. San Diego,2015.
[7]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//Computer Vision and Pattern Recognition.Boston,2015:1-9.
[8]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition.Las Vegas,2016:770-778.
[9]Wang C Y,Liao H Y M,Wu Y H,et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:390-391.
[10]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//Computer Vision and Pattern Recognition. Seattle,2020:11531-11539.
[11]Howard A G,Zhu M L,Chen B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[Z/OL]. (2017-04-17)[2022-01-01]. https://arxiv.org/abs/1704.04861.
[12]Hu J,Shen L,Albanie S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[13]韩兴,张红英,张媛媛. 基于高效通道注意力网络的人脸表情识别[J]. 传感器与微系统,2021,40(1):118-121.
[14]韩林洁,石春鹏,张建超. 基于一维卷积神经网络的轴承剩余寿命预测[J]. 制造业自动化,2020,42(3):10-13.
[15]Akiba T,Suzuki S,Fukuda K. Extremely large minibatch SGD:training ResNet-50 on ImageNet in 15 minutes[Z/OL]. (2017-11-17)[2022-01-01]. https://arxiv.org/abs/1711.04325.
[16]Ma N,Zhang X,Zheng H T,et al. ShuffleNet V2:practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018:116-131.
[17]Ioffe S,Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. 2015:448-456.
[18]Hinton G E,Srivastava N,Krizhevsky A,et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science,2012,3(4):212-223.

相似文献/References:

[1]马国胜,陈娟,薛毅.苏南地区绿篱病害发生规律与生态控制技术[J].江苏农业科学,2013,41(11):131.
 Ma Guosheng,et al.Occurrence and eco-control technology of hedgerow diseases in Southern Jiangsu[J].Jiangsu Agricultural Sciences,2013,41(4):131.
[2]易龙,张亚,廖晓兰,等.链霉菌防治植物病害的研究进展[J].江苏农业科学,2014,42(03):91.
 Yi Long,et al.Research progress of streptomyces controlling plant diseases[J].Jiangsu Agricultural Sciences,2014,42(4):91.
[3]王超,郭坚华,席运官,等.拮抗细菌在植物病害生物防治中应用的研究进展[J].江苏农业科学,2017,45(18):1.
 Wang Chao,et al.Research progress on application of antagonistic bacteria in biological control of plant diseases[J].Jiangsu Agricultural Sciences,2017,45(4):1.
[4]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
 Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(4):241.
[5]宋薇薇,朱辉,余凤玉,等.植物内生菌及其对植物病害的防治作用综述[J].江苏农业科学,2018,46(06):12.
 Song Weiwei,et al.Plant endophytes and their control effects on plant diseases:a review[J].Jiangsu Agricultural Sciences,2018,46(4):12.
[6]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251.
 Zhao Jianmin,et al.Potato leaf disease identification system based on convolutional neural network[J].Jiangsu Agricultural Sciences,2018,46(4):251.
[7]魏青迪,范昊,张承明.基于ECLDeeplab模型提取华北地区耕地的方法[J].江苏农业科学,2020,48(04):209.
 Wei Qingdi,et al.A method for extracting cultivated land in North China based on ECLDeeplab model[J].Jiangsu Agricultural Sciences,2020,48(4):209.
[8]陈峰,谷俊涛,李玉磊,等.基于机器视觉和卷积神经网络的东北寒地玉米害虫识别方法[J].江苏农业科学,2020,48(18):237.
 Chen Feng,et al.Recognition method of corn pests in northeast cold region based on machine vision and convolutional neural network[J].Jiangsu Agricultural Sciences,2020,48(4):237.
[9]陈旭君,王承祥,孙福,等.基于改进Faster R-CNN的田间植株幼苗检测方法[J].江苏农业科学,2021,49(4):159.
 Chen Xujun,et al.Detection method for plant seedlings in fields based on improved Faster R-CNN[J].Jiangsu Agricultural Sciences,2021,49(4):159.
[10]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
 Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(4):156.

备注/Memo

备注/Memo:
收稿日期:2022-03-01
基金项目:国家自然科学基金地区项目(编号:61563012);广西自然科学基金(编号:2021GXNSFAA220074)。
作者简介:杨祥(1970—),男,内蒙古乌兰察布人,硕士,教授,硕士生导师,主要研究方向为图像处理、模式识别。E-mail:490745953@qq.com。
通信作者:段军明,硕士研究生,主要研究方向为图像处理、深度学习。E-mail:1032241157@qq.com。
更新日期/Last Update: 2023-02-20