|本期目录/Table of Contents|

[1]戴久竣,马肄恒,吴坚,等.基于改进残差网络的葡萄叶片病害识别[J].江苏农业科学,2023,51(5):208-215.
 Dai Jiujun,et al.Grape leaf disease identification based on improved residual network[J].Jiangsu Agricultural Sciences,2023,51(5):208-215.
点击复制

基于改进残差网络的葡萄叶片病害识别(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第5期
页码:
208-215
栏目:
农业工程与信息技术
出版日期:
2023-03-05

文章信息/Info

Title:
Grape leaf disease identification based on improved residual network
作者:
戴久竣1马肄恒1吴坚2班兆军1
1.浙江科技学院生物与化学工程学院,浙江杭州 310023; 2.浙江科技学院机械与能源工程学院,浙江杭州 310023
Author(s):
Dai Jiujunet al
关键词:
葡萄病害残差网络金字塔卷积深度超参数化卷积层
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
葡萄病害是导致葡萄严重减产的主要因素,大多数病害症状都反映在葡萄的叶片上,但是人工针对叶片的识别费时且效率低。本研究提出了一种基于改进残差网络的葡萄叶片病害识别模型。该研究在ResNet50的基础上采用金字塔卷积网络,通过其包含不同大小和不同深度的卷积核来处理输入,然后以特征融合来获得不同程度的病害特征细节。在金字塔网络结构上采用深度超参数化卷积层代替传统的卷积层,能够加快模型收敛速度,有效提升模型精度。结果表明,改进后的残差网络模型与AlexNet、MobileNetV2、ResNet50/101、VGG16模型相比,在准确性方面具有显著优势。与原模型相比较,识别准确率提高3.18百分比,改进模型对病害识别准确率高达98.20%。可以为识别葡萄叶片病害提供参考。
Abstract:
-

参考文献/References:

[1]Sellitto V M,Zara S,Fracchetti F,et al. Microbial biocontrol as an alternative to synthetic fungicides:boundaries between pre-and postharvest applications on vegetables and fruits[J]. Fermentation,2021,7(2):60.
[2]陈之射,阳威. 计算机视觉及网络领域中人工智能的运用[J]. 华东科技,2022(1):108-110.
[3]冯硕,李旗. 奇异果采摘机器人机械臂控制系统研究:基于计算机视觉和卷积神经网络[J]. 农机化研究,2022,44(10):25-29.
[4]安鹤峰. 计算机视觉在作物根系识别与分析中的应用[J]. 农业科技与装备,2021(4):45-46.
[5]孙仕亮,赵静. 模式识别与机器学习[J]. 计算机教育,2020(11):2.
[6]陈荣,李旺,周文玉. 基于形状特征和支持向量机(SVM)的茶叶病害识别方法[J]. 贵州农业科学,2021,49(4):53-59.
[7]王聃,柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报,2019,40(9):171-180.
[8]周惠汝,吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报,2021,23(5):61-68.
[9]孙红,李松,李民赞,等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报,2020,51(5):1-17.
[10]刘慧力,贾洪雷,王刚,等. 基于深度学习与图像处理的玉米茎秆识别方法与试验[J]. 农业机械学报,2020,51(4):207-215.
[11]Boulent J,Foucher S,Théau J,et al. Convolutional neural networks for the automatic identification of plant diseases[J]. Frontiers in Plant Science,2019,10:941.
[12]马浚诚,杜克明,郑飞翔,等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报,2018,34(12):186-192.
[13]牛学德,高丙朋,南新元,等. 基于改进DenseNet卷积神经网络的番茄叶片病害检测[J]. 江苏农业学报,2022,38(1):129-134.
[14]Jaisakthi S M,Mirunalini P,Thenmozhi D,et al. Grape leaf disease identification using machine learning techniques[C]//2019 International Conference on Computational Intelligence in Data Science (ICCIDS).Chennai,India:IEEE,2019:1-6.
[15]刘峻,孙美艳,焦中元,等. 基于全局阈值迭代的苹果图像分割计数方法[J]. 安徽农业科学,2018,46(29):180-182,186.
[16]Singh U,Srivastava A,Chauhan D,et al. Computer vision technique for detection of grape esca (black measles) disease from grape leaf samples[C]//2020 International Conference on Contemporary Computing and Applications (IC3A).Lucknow,India:IEEE,2020:110-115.
[17]Arya S,Singh R. A comparative study of CNN and AlexNet for detection of disease in potato and mango leaf[C]//2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT).Ghaziabad,India:IEEE,2019:1-6.
[18]Chao X F,Sun G Y,Zhao H K,et al. Identification of apple tree leaf diseases based on deep learning models[J]. Symmetry,2020,12(7):1065.
[19]Kaur M,Bhatia R.Development of an improved tomato leaf disease detection and classification method[C]//2019 IEEE Conference on Information and Communication Technology.Allahabad,India:IEEE,2019:1-5.
[20]李彧,余心杰,郭俊先. 基于全卷积神经网络方法的玉米田间杂草识别[J]. 江苏农业科学,2022,50(6):93-100.
[21]Tahir M B,Khan M A,Javed K,et al. WITHDRAWN:recognition of apple leaf diseases using deep learning and variances-controlled features reduction[J]. Microprocessors and Microsystems,2021:104027.
[22]Zhang Q C,Bai C C,Liu Z,et al. A GPU-based residual network for medical image classification in smart medicine[J]. Information Sciences,2020,536:91-100.
[23]Zu D W,Zhang F,Wu Q L,et al. Disease identification of Lentinus edodes sticks based on deep learning model[J]. Complexity,2022,2022:9504055.
[24]龙满生,欧阳春娟,刘欢,等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报,2018,34(18):194-201.
[25]余小东,杨孟辑,张海清,等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报,2020,51(10):252-258.
[26]Liu Y W,Zhang X,Gao Y X,et al. Improved CNN method for crop pest identification based on transfer learning[J]. Computational Intelligence and Neuroscience,2022,2022:9709648.
[27]Krishnamoorthy N,Prasad L,Kumar C et al. Rice leaf diseases prediction using deep neural networks with transfer learning[J]. Environmental Research,2021,198:111275.
[28]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报,2020,51(2):230-236,253.

相似文献/References:

[1]王利伟,徐晓辉,苏彦莽,等.基于计算机视觉的葡萄叶部病害识别研究[J].江苏农业科学,2017,45(23):222.
 Wang Liwei,et al.Study on recognition of grape leaf diseases based on computer vision[J].Jiangsu Agricultural Sciences,2017,45(5):222.
[2]谢军,江朝晖,李博,等.基于二次迁移模型的小样本茶树病害识别[J].江苏农业科学,2021,49(6):176.
 Xie Jun,et al.Image recognition of tea plant disease small samples based on secondary migration model[J].Jiangsu Agricultural Sciences,2021,49(5):176.
[3]雷建云,陈楚,郑禄,等.基于改进残差网络的水稻害虫识别[J].江苏农业科学,2022,50(14):190.
 Lei Jianyun,et al.Identification of rice pests based on improved residual network[J].Jiangsu Agricultural Sciences,2022,50(5):190.
[4]鲍浩,张艳.基于注意力机制与改进残差模块的豆叶病害识别[J].江苏农业科学,2023,51(16):187.
 Bao Hao,et al.Bean leaf disease identification based on attention mechanism and improved residual module[J].Jiangsu Agricultural Sciences,2023,51(5):187.
[5]吴刚正,蔡成岗,朱瑞瑜.基于注意力机制和残差网络的苹果叶片病害分类[J].江苏农业科学,2023,51(18):177.
 Wu Gangzheng,et al.Apple leaf disease classification based on attention mechanism and residual network[J].Jiangsu Agricultural Sciences,2023,51(5):177.
[6]许文燕.基于轻量化神经网络的葡萄叶部病害检测装置研制[J].江苏农业科学,2023,51(19):181.
 Xu Wenyan.Development of grape leaf disease detection device based on lightweight neural network[J].Jiangsu Agricultural Sciences,2023,51(5):181.
[7]肖天赐,陈燕红,李永可,等.基于改进通道注意力机制的农作物病害识别模型研究[J].江苏农业科学,2023,51(24):168.
 Xiao Tianci,et al.Study on crop disease identification model based on improved channel attention mechanism[J].Jiangsu Agricultural Sciences,2023,51(5):168.
[8]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221.
 Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(5):221.
[9]黄英来,王奇,何少聪,等.基于改进ResNet101的黄瓜害虫识别方法研究[J].江苏农业科学,2025,53(5):203.
 Huang Yinglai,et al.Study on identification method for cucumber pests based on improved ResNet101[J].Jiangsu Agricultural Sciences,2025,53(5):203.
[10]刘宇雄,兰艳亭,陈晓栋.基于级联式分组注意力机制的葡萄病害识别模型[J].江苏农业科学,2025,53(5):121.
 Liu Yuxiong,et al.Grape disease recognition model based on cascaded group attention mechanism[J].Jiangsu Agricultural Sciences,2025,53(5):121.

备注/Memo

备注/Memo:
收稿日期:2022-04-19
基金项目:“十三五”国家重点研发计划(编号:2017YFD0401304);浙江省重点研发计划(编号:2022C04039)。
作者简介:戴久竣(1996—),男,浙江台州人,硕士研究生,研究方向为图像处理。E-mail:15968860545@163.com。
通信作者:吴坚,硕士,教授,硕士生导师,研究方向为农业信息学。E-mail:wujian@zust.edu.cn。
更新日期/Last Update: 2023-03-05