[1]国家统计局. 中国统计摘要2021[M]. 北京:中国统计出版社,2022.
[2]王明召,阳廷密,赵小龙,等. 橘小实蝇田间消长动态及对柑橘果实危害研究[J]. 应用昆虫学报,2019,56(3):485-491.
[3]Ding W G,Taylor G. Automatic moth detection from trap images for pest management[J]. Computers and Electronics in Agriculture,2016,123:17-28.
[4]于洪涛,袁明新,王琪,等. 基于VGG-F动态学习模型的苹果病虫害识别[J]. 科学技术与工程,2019,19(32):249-253.
[5]周宏威,沈恒宇,袁新佩,等. 基于迁移学习的苹果树叶片病虫害识别方法研究[J]. 中国农机化学报,2021,42(11):151-158.
[6]Xing S L,Lee M,Lee K K. Citrus pests and diseases recognition model using weakly dense connected convolution network[J]. Sensors,2019,19(14):3195.
[7]Morteza K,Ezzatollah A A,Ehsan K. Citrus pests classification using an ensemble of deep learning models[J]. Computers and Electronics in Agriculture,2021,186:106192.
[8]Partel V,Nunes L,Stansly P,et al. Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence[J]. Computers and Electronics in Agriculture,2019,162:328-336.
[9]Alves A N,Souza W S R,Borges D L. Cotton pests classification in field-based images using deep residual networks[J]. Computers and Electronics in Agriculture,2020,174:105488.
[10]张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报,2018,23(11):161-171.
[11]Tetila E C,Machado B B,Menezes G K,et al. Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(5):903-907.
[12]Amorim W P,Tetila E C,Pistori H,et al. Semi-supervised learning with convolutional neural networks for UAV images automatic recognition[J]. Computers and Electronics in Agriculture,2019,164:104932.
[13]李静,陈桂芬,安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报,2020,41(3):110-116.
[14]Waheed A,Goyal M,Gupta D,et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf[J]. Computers and Electronics in Agriculture,2020,175:105456.
[15]许景辉,邵明烨,王一琛,等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报,2020,51(2):230-236,253.
[16]Jiang F,Lu Y,Chen Y,et al. Image recognition of four rice leaf diseases based on deep learning and support vector machine[J]. Computers and Electronics in Agriculture,2020,179:105824.
[17]Wang F Y,Wang R J,Xie C J,et al. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment[J]. Computers and Electronics in Agriculture,2021,187:106268.
[18]Yao Q,Feng J,Tang J,et al. Development of an automatic monitoring system for rice light-trap pests based on machine vision[J]. Journal of Integrative Agriculture,2020,19(10):2500-2513.
[19]余小东,杨孟辑,张海清,等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报,2020,51(10):252-258.
[20]万军杰,祁力钧,卢中奥,等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报,2021,26(11):209-221.
[21]Kamal K C,Yin Z D,Wu M Y,et al. Depthwise separable convolution architectures for plant disease classification[J]. Computers and Electronics in Agriculture,2019,165:104948.
[22]Wang D W,Deng L M,Ni J G,et al. Recognition pest by image-based transfer learning[J]. Journal of the Science of Food and Agriculture,2019,99(10):4524-4531.
[23]温艳兰,陈友鹏,王克强,等. 基于机器视觉的病虫害检测综述[J]. 中国粮油学报,2022,37(10):271-279.
[24]赵立新,侯发东,吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报,2020,36(7):184-191.
[25]He Y,Zhou Z Y,Tian L H,et al. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning[J]. Precision Agriculture,2020,21(6):1385-1402.
[26]李衡霞,龙陈锋,曾蒙,等. 一种基于深度卷积神经网络的油菜虫害检测方法[J]. 湖南农业大学学报(自然科学版),2019,45(5):560-564.
[27]李昊,刘海隆,刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报,2021,42(9):195-201,208.
[28]孙鹏,陈桂芬,曹丽英. 基于注意力卷积神经网络的大豆害虫图像识别[J]. 中国农机化学报,2020,41(2):171-176.
[29]Malathi V,Gopinath M P.Classification of pest detection in paddy crop based on transfer learning approach[J]. Acta Agriculturae Scandinavica,Section B-Soil & Plant Science,2021,71(7):552-559.
[30]Zhang Y Y,Zhong W B,Pan H. Identification of stored grain pests by modified residual network[J]. Computers and Electronics in Agriculture,2021,182:105983.
[31]曹跃腾,朱学岩,赵燕东,等. 基于改进ResNet的植物叶片病虫害识别[J]. 中国农机化学报,2021,42(12):175-181.
[32]贾少鹏,高红菊,杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报,2019,50(增刊1):313-317.
[33]王铎,温长吉,王希龙,等. 基于深度卷积条件生成对抗网络的虫害分类算法研究[J]. 中国农机化学报,2020,41(6):179-187.
[34]杨丽英,李之洪. 橘小实蝇的形态特征、影响因素和防治措施[J]. 湖北农机化,2020(1):58.
[35]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA:IEEE,2016:770-778.
[1]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(8):241.
[2]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251.
Zhao Jianmin,et al.Potato leaf disease identification system based on convolutional neural network[J].Jiangsu Agricultural Sciences,2018,46(8):251.
[3]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(8):231.
[4]魏青迪,范昊,张承明.基于ECLDeeplab模型提取华北地区耕地的方法[J].江苏农业科学,2020,48(04):209.
Wei Qingdi,et al.A method for extracting cultivated land in North China based on ECLDeeplab model[J].Jiangsu Agricultural Sciences,2020,48(8):209.
[5]陈峰,谷俊涛,李玉磊,等.基于机器视觉和卷积神经网络的东北寒地玉米害虫识别方法[J].江苏农业科学,2020,48(18):237.
Chen Feng,et al.Recognition method of corn pests in northeast cold region based on machine vision and convolutional neural network[J].Jiangsu Agricultural Sciences,2020,48(8):237.
[6]陈旭君,王承祥,孙福,等.基于改进Faster R-CNN的田间植株幼苗检测方法[J].江苏农业科学,2021,49(4):159.
Chen Xujun,et al.Detection method for plant seedlings in fields based on improved Faster R-CNN[J].Jiangsu Agricultural Sciences,2021,49(8):159.
[7]范宏,刘素红,陈吉军,等.基于深度学习的白喉乌头与牧草高精度分类研究[J].江苏农业科学,2021,49(12):173.
Fan Hong,et al.Study on high-precision classification of Aconitum leucostomum Worosch and pasture based on deep learning[J].Jiangsu Agricultural Sciences,2021,49(8):173.
[8]李萍,邵彧,齐国红,等.基于跨深度学习模型的作物病害检测方法[J].江苏农业科学,2022,50(8):193.
Li Ping,et al.Crop disease detection method based on cross deep learning model[J].Jiangsu Agricultural Sciences,2022,50(8):193.
[9]李祥宇,任艳娜,马新明,等.面向小麦生育进程监测的卷积神经网络精简化研究[J].江苏农业科学,2022,50(8):199.
Li Xiangyu,et al.Study on simplified convolutional neural network for monitoring wheat growth process[J].Jiangsu Agricultural Sciences,2022,50(8):199.
[10]徐振南,王建坤,胡益嘉,等.基于MobileNetV3的马铃薯病害识别[J].江苏农业科学,2022,50(10):176.
Xu Zhennan,et al.Potato disease recognition based on MobileNetV3[J].Jiangsu Agricultural Sciences,2022,50(8):176.
[11]黎振,陆玲,熊方康.基于k-means分割和迁移学习的番茄病理识别[J].江苏农业科学,2021,49(12):156.
Li Zhen,et al.Tomato pathological recognition based on k-means segmentation and transfer learning[J].Jiangsu Agricultural Sciences,2021,49(8):156.
[12]姜月明,王健,董光辉,等.基于改进卷积神经网络的苹果叶片病害识别[J].江苏农业科学,2024,52(14):214.
Jiang Yueming,et al.Recognition of apple leaf disease based on improved convolutional neural network[J].Jiangsu Agricultural Sciences,2024,52(8):214.