[1]李会宾,史云. 果园采摘机器人研究综述[J]. 中国农业信息,2019,31(6):1-9.
[2]李书琴,陈聪,朱彤,等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报,2022,53(3):243-250.
[3]Bari B S,Islam M N,Rashid M,et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. Peer J Computer Science,2021,7:e432.
[4]王超学,祁昕,马罡,等. 基于YOLOv3的葡萄病害人工智能识别系统[J]. 植物保护,2022,48(6):278-288.
[5]Richey B,Shirvaikar M V. Deep learning based real-time detection of northern corn leaf blight crop disease using YOLOv4[C]//Real-Time Image Processing and Deep Learning. 2021:39-45.
[6]Haque M E,Rahman A,Junaeid I,et al. Rice leaf disease classification and detection using YOLOv5[EB/OL]. (2022-09-04)[2022-10-10]. https://arxiv.org/pdf/2209.01579.pdf.
[7]雷建云,陈楚,郑禄,等. 基于改进残差网络的水稻害虫识别[J]. 江苏农业科学,2022,50(14):190-198.
[8]Ultralytics.YOLOv5[EB/OL]. (2020-06-26)[2022-02-22]. https://github.com/ultralytics/YOLOv5.
[9]Rezatofighi H,Tsoi N,Gwak J Y,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:658-666.
[10]Zheng Z,Wang P,Liu W,et al. Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020:12993-13000.
[11]Zheng Z H,Wang P,Ren D W,et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics,2022,52(8):8574-8586.
[12]Gevorgyan Z.SIoU loss:more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2022-10-10]. https://arxiv.org/abs/2205.12740.
[13]He K M,Zhang X Y,Ren S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[14]Guo M H,Xu T X,Liu J J,et al. Attention mechanisms in computer vision:a survey[J]. Computational Visual Media,2022,8(3):331-368.
[15]Srinivas A,Lin T Y,Parmar N,et al. Bottleneck transformers for visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville:IEEE,2021:16514-16524.
[16]Shaw P,Uszkoreit J,Vaswani A.Self-attention with relative position representations[EB/OL]. (2018-04-12)[2022-09-10]. https://arxiv.org/pdf/1803.02155.pdf.
[1]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(13):247.
[2]陈恩会,褚姝频,王炜,等.基于RetinaNet模型的梨小食心虫智能识别计数方法[J].江苏农业科学,2021,49(24):205.
Chen Enhui,et al.Intelligent recognition and counting method of Grapholitha molesta based on RetinaNet model[J].Jiangsu Agricultural Sciences,2021,49(13):205.
[3]陶雪阳,施振旦,郭彬彬,等.基于RFID与目标检测的种鹅个体产蛋信息监测方法[J].江苏农业科学,2023,51(5):200.
Tao Xueyang,et al.Monitoring method of individual egg-laying information of breeding geese based on RFID and object detection[J].Jiangsu Agricultural Sciences,2023,51(13):200.
[4]严陈慧子,田芳明,谭峰,等.基于改进YOLOv4的水稻病害快速检测方法[J].江苏农业科学,2023,51(6):187.
Yanchen Huizi,et al.Rapid detection method of rice diseases based on improved YOLOv4[J].Jiangsu Agricultural Sciences,2023,51(13):187.
[5]姜国权,杨正元,霍占强,等.基于改进YOLOv5网络的疏果前苹果检测方法[J].江苏农业科学,2023,51(14):205.
Jiang Guoquan,et al.Apple detection method before thinning fruit based on improved YOLOv5 model[J].Jiangsu Agricultural Sciences,2023,51(13):205.
[6]王圆圆,林建,王姗.基于YOLOv4-tiny模型的水稻早期病害识别方法[J].江苏农业科学,2023,51(16):147.
Wang Yuanyuan,et al.An early rice disease recognition method based on YOLOv4-tiny model[J].Jiangsu Agricultural Sciences,2023,51(13):147.
[7]倪智涛,胡伟健,李宝山,等.一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J].江苏农业科学,2023,51(22):221.
Ni Zhitao,et al.A novel method for tomato fine-grained disease recognition based on image classification and target detection[J].Jiangsu Agricultural Sciences,2023,51(13):221.
[8]施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175.
Shi Jie,et al.Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model[J].Jiangsu Agricultural Sciences,2023,51(13):175.
[9]郑旭康,李志忠,秦俊豪.基于半监督学习的梨叶病害检测[J].江苏农业科学,2024,52(5):192.
Zheng Xukang,et al.Study on pear leaf disease detection based on semi-supervised learning[J].Jiangsu Agricultural Sciences,2024,52(13):192.
[10]温彬彬,张华,孟祥龙.基于改进YOLO v5的轻量化苹果检测方法[J].江苏农业科学,2024,52(12):217.
Wen Binbin,et al.A lightweight apple detection method based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(13):217.