[1]Chen J D,Chen J X,Zhang D F,et al. Using deep transfer learning for image-based plant disease identification[J]. Computers and Electronics in Agriculture,2020,173:105393.
[2]赵建敏,芦建文. 基于字典学习的马铃薯叶片病害图像识别算法[J]. 河南农业科学,2018,47(4):154-160.
[3]Tiwari D,Ashish M,Gangwar N,et al. Potato leaf diseases detection using deep learning[C]//2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS).Madurai,India.IEEE,2020:461-466.
[4]Mahum R,Munir H,Mughal Z U N,et al. A novel framework for potato leaf disease detection using an efficient deep learning model[J]. Human and Ecological Risk Assessment,2023,29(2):303-326.
[5]Lee T Y,Lin I A,Yu J Y,et al. High efficiency disease detection for potato leaf with convolutional neural network[J]. SN Computer Science,2021,2(4):297.
[6]赵越,赵辉,姜永成,等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报,2022,43(10):183-189.
[7]Rashid J,Khan I,Ali G,et al. Multi-level deep learning model for potato leaf disease recognition[J]. Electronics,2021,10(17):2064.
[8]赵建敏,李艳,李琦,等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学,2018,46(24):251-255.
[9]Li J W,Qiao Y L,Liu S,et al. An improved YOLOv5-based vegetable disease detection method[J]. Computers and Electronics in Agriculture,2022,202:107345.
[10]Afzaal H,Farooque A A,Schumann A W,et al. Detection of a potato disease (early blight) using artificial intelligence[J]. Remote Sensing,2021,13(3):411.
[11]Saeed F,Khan M A,Sharif M,et al. Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification[J]. Applied Soft Computing,2021,103:107164.
[12]Chen J D,Deng X F,Wen Y X,et al. Weakly-supervised learning method for the recognition of potato leaf diseases[J/OL]. Artificial Intelligence Review,(2022-12-21)[2023-01-08].https://doi.org/10.1007/s/0462-022-10374-3.
[13]Abdallah A. Plant village dataset[EB/OL]. (2022-11-26)[2023-01-05]. https://www.kaggle.com/abdallahalidev/plantvillage-dataset.
[14]Zhang L B,Zhang J,Ma J,et al. SC-PNN:saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(11):9697-9715.
[15]Wang S H,Zhou Q,Yang M,et al. ADVIAN:Alzheimers disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation[J]. Frontiers in Aging Neuroscience,2021,13:687456.
[16]Shuai Y Z,Yuan Q,Zhao S S.A spatial-channel attention-based convolutional neural network for remote sensing image classification[C]//IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur,Malaysia.IEEE,2022:3628-3631.
[1]马驰,吴华瑞,于会山.基于YOLOX的穴盘甘蓝病害检测方法[J].江苏农业科学,2023,51(8):193.
Ma Chi,et al.Detection method of cabbage disease based on YOLOX[J].Jiangsu Agricultural Sciences,2023,51(15):193.
[2]黄贻望,王国帅,毛志,等.KMeans++与注意力机制融合的苹果叶片病害识别方法[J].江苏农业科学,2024,52(20):190.
Huang Yiwang,et al.Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms[J].Jiangsu Agricultural Sciences,2024,52(15):190.
[3]叶琪,王丽芬,马明涛,等.基于改进YOLO v8的草莓病害检测方法[J].江苏农业科学,2024,52(20):250.
Ye Qi,et al.Strawberry disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(15):250.
[4]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(15):220.