|本期目录/Table of Contents|

[1]邢鹏康,李久朋.基于小样本学习的马铃薯叶片病害检测[J].江苏农业科学,2023,51(15):203-210.
 Xing Pengkang,et al.Potato leaf disease detection based on small sample learning[J].Jiangsu Agricultural Sciences,2023,51(15):203-210.
点击复制

基于小样本学习的马铃薯叶片病害检测(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第15期
页码:
203-210
栏目:
农业工程与信息技术
出版日期:
2023-08-05

文章信息/Info

Title:
Potato leaf disease detection based on small sample learning
作者:
邢鹏康12李久朋23
1. 河南省工业物联网应用工程技术研究中心,河南南阳 473000; 2.河南工业职业技术学院电子信息工程学院,河南南阳 473000;3. 中山大学电子与信息工程学院,广东广州 510275
Author(s):
Xing Pengkanget al
关键词:
马铃薯叶片病害检测卷积块注意力机制小样本学习任务感知注意力
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
马铃薯叶片的病害将直接导致马铃薯产量和质量的下降,为实现马铃薯叶片病害的精确检测并及时预防病变,提出了一种基于小样本学习的马铃薯叶片病害检测算法。首先,利用一组共享权重的特征提取器将输入图片映射到深度特征空间;然后,提出一种任务感知注意力模块用于融合小样本学习网络中的双分支输入特征,强化目标任务的特定表达能力;最后,引入一种动态卷积模块提高卷积核的建模能力,并将卷积块注意力机制(CBAM)嵌入到该卷积网络中,构造特征强化学习模块,细粒度地捕获病害区域的细节特征。通过在开源马铃薯叶片病害检测数据集上进行测试,所提出模型分别实现了93.92%的准确率、93.81%的精准率、93.85%的召回率和93.63%的F1值;此外,在自建数据集上与当前经典马铃薯叶片病害检测模型相比,同样具有较好的竞争力。
Abstract:
-

参考文献/References:

[1]Chen J D,Chen J X,Zhang D F,et al. Using deep transfer learning for image-based plant disease identification[J]. Computers and Electronics in Agriculture,2020,173:105393.
[2]赵建敏,芦建文. 基于字典学习的马铃薯叶片病害图像识别算法[J]. 河南农业科学,2018,47(4):154-160.
[3]Tiwari D,Ashish M,Gangwar N,et al. Potato leaf diseases detection using deep learning[C]//2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS).Madurai,India.IEEE,2020:461-466.
[4]Mahum R,Munir H,Mughal Z U N,et al. A novel framework for potato leaf disease detection using an efficient deep learning model[J]. Human and Ecological Risk Assessment,2023,29(2):303-326.
[5]Lee T Y,Lin I A,Yu J Y,et al. High efficiency disease detection for potato leaf with convolutional neural network[J]. SN Computer Science,2021,2(4):297.
[6]赵越,赵辉,姜永成,等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报,2022,43(10):183-189.
[7]Rashid J,Khan I,Ali G,et al. Multi-level deep learning model for potato leaf disease recognition[J]. Electronics,2021,10(17):2064.
[8]赵建敏,李艳,李琦,等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学,2018,46(24):251-255.
[9]Li J W,Qiao Y L,Liu S,et al. An improved YOLOv5-based vegetable disease detection method[J]. Computers and Electronics in Agriculture,2022,202:107345.
[10]Afzaal H,Farooque A A,Schumann A W,et al. Detection of a potato disease (early blight) using artificial intelligence[J]. Remote Sensing,2021,13(3):411.
[11]Saeed F,Khan M A,Sharif M,et al. Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification[J]. Applied Soft Computing,2021,103:107164.
[12]Chen J D,Deng X F,Wen Y X,et al. Weakly-supervised learning method for the recognition of potato leaf diseases[J/OL]. Artificial Intelligence Review,(2022-12-21)[2023-01-08].https://doi.org/10.1007/s/0462-022-10374-3.
[13]Abdallah A. Plant village dataset[EB/OL]. (2022-11-26)[2023-01-05]. https://www.kaggle.com/abdallahalidev/plantvillage-dataset.
[14]Zhang L B,Zhang J,Ma J,et al. SC-PNN:saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(11):9697-9715.
[15]Wang S H,Zhou Q,Yang M,et al. ADVIAN:Alzheimers disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation[J]. Frontiers in Aging Neuroscience,2021,13:687456.
[16]Shuai Y Z,Yuan Q,Zhao S S.A spatial-channel attention-based convolutional neural network for remote sensing image classification[C]//IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur,Malaysia.IEEE,2022:3628-3631.

相似文献/References:

[1]马驰,吴华瑞,于会山.基于YOLOX的穴盘甘蓝病害检测方法[J].江苏农业科学,2023,51(8):193.
 Ma Chi,et al.Detection method of cabbage disease based on YOLOX[J].Jiangsu Agricultural Sciences,2023,51(15):193.
[2]黄贻望,王国帅,毛志,等.KMeans++与注意力机制融合的苹果叶片病害识别方法[J].江苏农业科学,2024,52(20):190.
 Huang Yiwang,et al.Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms[J].Jiangsu Agricultural Sciences,2024,52(15):190.
[3]叶琪,王丽芬,马明涛,等.基于改进YOLO v8的草莓病害检测方法[J].江苏农业科学,2024,52(20):250.
 Ye Qi,et al.Strawberry disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2024,52(15):250.
[4]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
 Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(15):220.

备注/Memo

备注/Memo:
收稿日期:2023-01-08
基金项目:河南省科技攻关重点资助项目(编号:212102310086);河南工业职业技术学院青年骨干教师培养计划(编号:2020033004)。
作者简介:邢鹏康(1984—),男,陕西西安人,硕士,讲师,研究方向为农作物疾病检测、深度学习、智慧农业。E-mail:pengkxing@sina.com。
更新日期/Last Update: 2023-08-05