[1]王宠,蔡健灵,焦玲,等. 豆类食品的合理食用研究[J]. 粮食科技与经济,2020,45(4):127-129.
[2]马鸾艳. 豆角露地高产栽培及病虫害防治技术探讨[J]. 南方农业,2021,15(32):48-50.
[3]Ferentinos K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture,2018,145:311-318.
[4]Lee S H,Goёau H,Bonnet P,et al. Attention-based recurrent neural network for plant disease classification[J]. Frontiers in Plant Science,2020,11:601250.
[5]王美华,吴振鑫,周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报,2021,52(4):239-247.
[6]李萍,邵彧,齐国红,等. 基于跨深度学习模型的作物病害检测方法[J]. 江苏农业科学,2022,50(8):193-199.
[7]Bahdanau D,Cho K,Bengio Y. Neural machine translation by jointly learning to align and translate[R/OL]. 2014:arXiv:1409.0473.https://arxiv.org/abs/1409.0473
[8]Zeng W H,Li M. Crop leaf disease recognition based on self-attention convolutional neural network[J]. Computers and Electronics in Agriculture,2020,172:105341.
[9]Karthik R,Hariharan M,Anand S,et al. Attention embedded residual CNN for disease detection in tomato leaves[J]. Applied Soft Computing,2020,86:105933.
[10]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:770-778.
[11]方晨晨,石繁槐. 基于改进深度残差网络的番茄病害图像识别[J]. 计算机应用,2020,40(增刊1):203-208.
[12]曾伟辉,李淼,李增,等. 基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别[J]. 电子学报,2019,47(9):1979-1986.
[13]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[14]张福玲,张少敏,支力佳,等. 融合注意力机制和特征金字塔网络的CT图像肺结节检测[J]. 中国图象图形学报,2021,26(9):2156-2170.
[15]李明悦,何乐生,雷晨,等. 基于注意力特征融合的SqueezeNet细粒度图像分类模型[J]. 云南大学学报(自然科学版),2021,43(5):868-876.
[16]陈娟,陈良勇,王生生,等. 基于改进残差网络的园林害虫图像识别[J]. 农业机械学报,2019,50(5):187-195.
[17]雷建云,陈楚,郑禄,等. 基于改进残差网络的水稻害虫识别[J]. 江苏农业科学,2022,50(14):190-198.
[18]Sandler M,Howard A,Zhu M L,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT.IEEE,2018:4510-4520.
[19]Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[R/OL]. 2014:arXiv:1409.1556.https://arxiv.org/abs/1409.1556
[20]Huang G,Liu Z,van der Maaten L,et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI.IEEE,2017:4700-4708.
[21]汤文亮,黄梓锋. 基于知识蒸馏的轻量级番茄叶部病害识别模型[J]. 江苏农业学报,2021,37(3):570-578.
[22]Selvaraju R R,Cogswell M,Das A,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice:IEEE,2017:618-626.