[1]Wang L Y,Xie Y S,Cui Y Y,et al. Conjunctively screening of biocontrol agents (BCAs) against Fusarium root rot and Fusarium head blight caused by Fusarium graminearum[J]. Microbiological Research,2015,177:34-42.
[2]Xiu Q,Bi L Y,Xu H R,et al. Antifungal activity of quinofumelin against Fusarium graminearum and its inhibitory effect on DON biosynthesis[J]. Toxins,2021,13(5):348.
[3]胡娴,何珊,史红安,等. 木霉菌应用研究进展[J]. 湖北工程学院学报,2019,39(6):50-55.
[4]Benhamou N,le Floch G,Vallance J,et al. Pythium oligandrum:an example of opportunistic success[J]. Microbiology,2012,158(Pt 11):2679-2694.
[5]惠娜娜,王立,郑果,等. 8种杀菌剂对马铃薯炭疽病病菌室内毒力测定[J]. 甘肃农业科技,2021,52(4):22-24.
[6]Ouhaibi-Ben Abdeljalil N,Vallance J,Gerbore J,et al. Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot[J]. Biological Control,2021,155:104521.
[7]Pánek M,Hanácˇek A,Wenzlová J,et al. A comparison of the ability of some commercially produced biological control agents to protect strawberry plants against the plant pathogen Phytophthora cactorum[J]. Agriculture,2021,11(11):1086.
[8]Yang K,Dong X H,Li J L,et al. Type 2 Nep1-like proteins from the biocontrol oomycete Pythium oligandrum suppress Phytophthora capsici infection in solanaceous plants[J]. Journal of Fungi,2021,7(7):496.
[9]毕秋艳,韩秀英,马志强,等. 寡雄腐霉与烯酰吗啉互作防治葡萄霜霉病和替代部分化学药剂减量用药应用[J]. 植物病理学报,2018,48(5):675-681.
[10]李鑫杰,汪丽军,黄利春,等. 寡雄腐霉对水稻立枯病的防效初探[J]. 中国植保导刊,2015,35(8):56-58.
[11]姜一鸣,黄海鹰,陈勇. 寡雄腐霉生防机理及应用研究进展[J]. 中国生物防治学报,2017,33(3):401-407.
[12]Benhamou N,Rey P,Picard K,et al. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens[J]. Phytopathology,1999,89(6):506-517.
[13]陈晨,旷文丰,陈娟,等. 钙离子和蓝光对深绿木霉Tr775在液体发酵过程中分生孢子产量的影响[J]. 化学与生物工程,2018,35(1):36-40.
[14]梁玎玎,张艳丽,谷祖敏. 草茎点霉SYAU-06菌株诱导产孢方法研究[J]. 农药,2020,59(3):219-222.
[15]旷文丰,糜芳,陈晨,等. 光诱导作用对木霉菌产孢量的影响研究[J]. 化学与生物工程,2020,37(6):51-57.
[16]Zhang C Y,Wang W W,Hu Y H,et al. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum[J]. BMC Microbiology,2022,22(1):67.
[17]Yassin M T,Mostafa A A F,Al-Askar A A. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat[J]. Journal of Taibah University for Science,2022,16(1):57-65.
[18]Ferraz P,Brando R L,Cássio F,et al. Moniliophthora perniciosa,the causal agent of cacao Witches broom disease is killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus yeasts[J]. Frontiers in Microbiology,2021,12:706675.
[19]Horner N R,Grenville-Briggs L J,van West P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation[J]. Fungal Biology,2012,116(1):24-41.
[20]Ribeiro W R C,Butler E E. Comparison of the mycoparasites Pythium periplocum,P.acanthicum and P.oligandrum[J]. Mycological Research,1995,99(8):963-968.
[21]Zhu Y L,Zhang M Q,Wang L S,et al. Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum[J]. Fungal Genetics and Biology,2022,158:103650.
[22]Chen Y,Wang J,Yang N,et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J]. Nature Communications,2018,9:3429.
[23]Xu S J,Wang Y X,Hu J Q,et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01,a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone[J]. Food Control,2021,130:108259.
[24]Diabankana R G C,Afordoanyi D M,Safin R I,et al. Antifungal properties,abiotic stress resistance,and biocontrol ability of Bacillus mojavensis PS17[J]. Current Microbiology,2021,78(8):3124-3132.
[25]Borkovich K A,Ebbole D J. Cellular and molecular biology of filamentous fungi[M]. Washington D C:ASM Press,2010.
[26]Ngolong Ngea G L,Qian X,Yang Q Y,et al. Securing fruit production:opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(3):2508-2533.
[27]张莹莹,郝文娟,李宏玉,等. 一株多黏类芽孢杆菌Paenibacillus polymyxa菌株P1防治广东菜心根肿病的研究[J]. 植物保护,2022,48(1):291-296,304.
[28]Liu Q L,Zhang R,Xue H L,et al. Ozone controls potato dry rot development and diacetoxyscirpenol accumulation by targeting the cell membrane and affecting the growth of Fusarium sulphureus[J]. Physiological and Molecular Plant Pathology,2022,118:101785.
[1]孙晓梅,黄金光.禾谷镰刀菌甾醇14α脱甲基酶基因cDNA克隆及生物信息学分析[J].江苏农业科学,2016,44(03):31.
Sun Xiaomei,et al.cDNA cloning and bioinformatics analysis of sterol 14α-demethylase gene in Fusarium graminearum[J].Jiangsu Agricultural Sciences,2016,44(18):31.
[2]张鹏,邓渊钰,杨学明,等.小麦茎基腐病菌鉴定及不同药剂防治效果分析[J].江苏农业科学,2016,44(11):142.
Zhang Peng,et al.Identification of wheat stem rot pathogen and analysis of control effects of different pesticides[J].Jiangsu Agricultural Sciences,2016,44(18):142.
[3]侯瑞,金巧军.禾谷镰刀菌真菌毒素DON生物合成途径及调控机制研究进展[J].江苏农业科学,2018,46(17):9.
Hou Rui,et al.Research progress of biosynthesis approach and regulatory mechanisms of Fusarium graminearum mycotoxin DON[J].Jiangsu Agricultural Sciences,2018,46(18):9.
[4]张悦,施维,李丹,等.禾谷镰刀菌全基因组候选效应因子预测与分析[J].江苏农业科学,2019,47(06):81.
Zhang Yue,et al.Analysis of candidate effectors from genome of Fusarium graminearum[J].Jiangsu Agricultural Sciences,2019,47(18):81.
[5]曹坤,管明,陈康,等.一株拮抗禾谷镰刀菌和降解呕吐毒素解淀粉芽孢杆菌的筛选及在饲料贮存中的应用[J].江苏农业科学,2019,47(08):179.
Cao Kun,et al.Screening of probiotic Bacillus amyloliquefaciens CPLK1314 with function of antagonizing Fusarium graminearum and degrading vomiting toxin and its application in forage storing[J].Jiangsu Agricultural Sciences,2019,47(18):179.
[6]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌ZQT-31的分离与鉴定[J].江苏农业科学,2021,49(9):80.
Zhang Qiang,et al.Isolation and identification of antagonistic bacteria ZQT-31 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(18):80.
[7]张艳茹,霍云凤,石红利,等.禾谷镰刀菌拮抗菌ZQT-9的鉴定与抑菌活性[J].江苏农业科学,2021,49(18):111.
Zhang Yanru,et al.Identification and antifungal activity of antagonistic bacteria ZQT-9 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(18):111.
[8]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌21-1的发酵条件及稳定性分析[J].江苏农业科学,2023,51(20):122.
Zhang Qiang,et al.Fermentation conditions and stability of antagonistic actinomycete 21-1 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2023,51(18):122.
[9]周萍,张弛,荀以仁,等.青稞内生细菌RKZ-05对禾谷镰刀菌的拮抗作用及其分子鉴定[J].江苏农业科学,2023,51(22):113.
Zhou Ping,et al.Antagonism of endophytic bacteria RKZ-05 from highland barley against Fusarium graminearum and its molecular identification[J].Jiangsu Agricultural Sciences,2023,51(18):113.
[10]赵美荣,李永春,张志超.1株拮抗禾谷镰刀菌生防菌株的筛选鉴定[J].江苏农业科学,2024,52(11):128.
Zhao Meirong,et al.Screening and identification of a biocontrol strain against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2024,52(18):128.