|本期目录/Table of Contents|

[1]吴刚正,蔡成岗,朱瑞瑜.基于注意力机制和残差网络的苹果叶片病害分类[J].江苏农业科学,2023,51(18):177-185.
 Wu Gangzheng,et al.Apple leaf disease classification based on attention mechanism and residual network[J].Jiangsu Agricultural Sciences,2023,51(18):177-185.
点击复制

基于注意力机制和残差网络的苹果叶片病害分类(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第18期
页码:
177-185
栏目:
农业工程与信息技术
出版日期:
2023-09-20

文章信息/Info

Title:
Apple leaf disease classification based on attention mechanism and residual network
作者:
吴刚正蔡成岗朱瑞瑜
浙江科技学院生物与化学工程学院/浙江省农产品化学与生物加工技术重点实验室,浙江杭州 310023
Author(s):
Wu Gangzhenget al
关键词:
苹果叶片病害分类注意力机制特征提取残差网络P-D-ECA-ResNet101
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
苹果叶片病害的高效准确识别有助于合理使用杀虫剂、肥料等农业资源,进而保证苹果的产量与质量。为提高苹果叶片病害识别的准确率,提出一种残差网络与注意力机制结合的苹果叶片病害识别模型:P-D-ECA-ResNet101。首先构建苹果叶片病害数据集,然后使用常见的4种网络模型在构建的数据集上进行训练,选取训练效果最好的ResNet101为骨干网络模型,通过推迟下采样(delayed downsampling)、拆解大卷积层以及引入高效通道(efficient channel attention module,ECA)注意力模块对ResNet101网络模型进行优化,最后通过特征图可视化展示改进后网络模型的识别机制。试验结果表明,推迟下采样可以增强模型特征提取能力,拆解大卷积层可以有效减少模型的复杂度,引入ECA注意力模块可以削弱无效特征信息对模型的干扰。改进后的P-D-ECA-ResNet101模型在构建的苹果叶片病害测试集上的平均识别准确率达到96.20%,相较于原模型ResNet101提升了2.20百分点。特征图可视化分析表明改进后的P-D-ECA-ResNet101模型可以更好地聚焦于病斑区域。本研究提出的P-D-ECA-ResNet101模型较ResNet101模型具有更深的网络结构,更好的特征提取能力,更强的抗干扰能力,可为田间环境下的苹果叶片病害识别提供参考。
Abstract:
-

参考文献/References:

[1]Sethy P K,Barpanda N K,Rath A K,et al. Deep feature based rice leaf disease identification using support vector machine[J]. Computers and Electronics in Agriculture,2020,175(1):105527.
[2]翟肇裕,曹益飞,徐焕良,等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报,2021,52(7),1-18.
[3]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[4]Patil R,Kumar S. Bibliometric survey on diagnosis of plant leaf diseases using artificial intelligence[J]. International Journal of Modern Agriculture,2020,9(3):1111-1131.
[5]Kalwad P D,Kanakaraddi S G,Preeti T,et al. Apple leaf disease detection and analysis using deep learning technique[M]//Information And Communication Technology For Competitive Strategies. Berlin:Springer,2022:803-814.
[6]Bin L,Ding Z F,Tian L L,et al. Grape leaf disease identification using improved deep convolutional neural networks[J]. Frontiers in Plant Science,2020,11:1082.
[7]Zeng W H,Li M.Crop leaf disease recognition based on self-attention convolutional neural network[J]. Computers and Electronics in Agriculture,2020,172:105341.
[8]李淼,王敬贤,李华龙,等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业,2019,1(3):46-55.
[9]孙俊,谭文军,毛罕平,等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报,2017,33(19):209-215.
[10]Gonzalez-Huitron V,León-Borges J A,Rodriguez-Mata A E,et al. Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4[J]. Computers and Electronics in Agriculture,2021,181:105951.
[11]Germano M,Augusto M S,Tatiana P,et al. Benchmark of deep learning and a proposed HSV colour space models for the detection and classification of greenhouse tomato[J]. Agronomy,2022,12(2):356.
[12]Tang Z,Yang J L,Li Z,et al. Grape disease image classification based on lightweight convolution neural networks and channelwise attention[J]. Computers and Electronics in Agriculture,2020,178:105735.
[13]Zhu X Y,Li J J,Jia R C,et al. LAD-net:a novel light weight model for early apple leaf pests and diseases classification[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(2):1156-1169.
[14]Zhao S Y,Liu J Z,Wu S.Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R_CNN[J]. Computers and Electronics in Agriculture,2022,199:107176.
[15]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016:770-778.
[16]Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision[EB/OL]. (2015-12-11)[2022-11-01]. https://arxiv.org/abs/1512.00567.
[17]Zhang H,Zu K K,Lu J,et al. EPSANet:an efficient pyramid squeeze attention block on convolutional neural network[EB/OL]. (2021-07-22)[2022-11-01]. https://arxiv.org/abs/2105.14447.
[18]Krizhevsky A,Sutskever I,Hinton G.ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25(2):84-90.
[19]Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-10-11]. https://arxiv.org/abs/1409.1556.
[20]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston:IEEE,2015:1-9.

相似文献/References:

[1]张会敏,谢泽奇,张善文.基于注意力胶囊网络的作物病害识别方法[J].江苏农业科学,2022,50(6):101.
 Zhang Huimin,et al.Study on crop disease recognition method based on attention capsule network[J].Jiangsu Agricultural Sciences,2022,50(18):101.
[2]李萍,邵彧,齐国红,等.基于跨深度学习模型的作物病害检测方法[J].江苏农业科学,2022,50(8):193.
 Li Ping,et al.Crop disease detection method based on cross deep learning model[J].Jiangsu Agricultural Sciences,2022,50(18):193.
[3]荣民希,班彬,王智峥,等.基于Macbm-RCNN的叶片周长和面积测量方法[J].江苏农业科学,2022,50(13):199.
 Rong Minxi,et al.Measurement method of leaf circumference and area based on Macbm-RCNN[J].Jiangsu Agricultural Sciences,2022,50(18):199.
[4]崔艳荣,卞珍怡,高英宁.基于生成对抗网络的花卉识别方法[J].江苏农业科学,2022,50(22):200.
 Cui Yanrong,et al.Flower recognition method based on generative adversarial networks[J].Jiangsu Agricultural Sciences,2022,50(18):200.
[5]马驰,吴华瑞,于会山.基于YOLOX的穴盘甘蓝病害检测方法[J].江苏农业科学,2023,51(8):193.
 Ma Chi,et al.Detection method of cabbage disease based on YOLOX[J].Jiangsu Agricultural Sciences,2023,51(18):193.
[6]温艳兰,陈友鹏,王克强,等.基于迁移学习和改进残差网络的复杂背景下害虫图像识别[J].江苏农业科学,2023,51(8):171.
 Wen Yanlan,et al.Recognition of pest images under complex background based on transfer learning and improved residual network[J].Jiangsu Agricultural Sciences,2023,51(18):171.
[7]赵嘉威,田光兆,邱畅,等.基于改进YOLOv4算法的苹果叶片病害检测方法[J].江苏农业科学,2023,51(9):193.
 Zhao Jiawei,et al.Detection method of apple leaf diseases based on improved YOLOv4 algorithm[J].Jiangsu Agricultural Sciences,2023,51(18):193.
[8]温钊发,蒲智,程曦,等.基于轻量级MIE_Net的田间农作物病害识别[J].江苏农业科学,2023,51(10):176.
 Wen Zhaofa,et al.Field crop disease identification based on lightweight MIE_Net[J].Jiangsu Agricultural Sciences,2023,51(18):176.
[9]沈志豪,刘金江,张建洋.基于改进YOLOX-s的田间麦穗检测及计数[J].江苏农业科学,2023,51(12):164.
 Shen Zhihao,et al.Detection and counting of wheat ears in field based on improved YOLOX-s[J].Jiangsu Agricultural Sciences,2023,51(18):164.
[10]曾晏林,贺壹婷,蔺瑶,等.基于BCE-YOLOv5的苹果叶部病害检测方法[J].江苏农业科学,2023,51(15):155.
 Zeng Yanlin,et al.An apple leaf disease detection method based on BCE-YOLOv5[J].Jiangsu Agricultural Sciences,2023,51(18):155.

备注/Memo

备注/Memo:
收稿日期:2022-11-03
基金项目:浙江省基础公益研究计划(编号:LGN20C200012);浙江省重点研发计划(编号:2020C02038)。
作者简介:吴刚正(1998—),男,浙江温州人,硕士研究生,主要从事农业机械研究。E-mail:wgz15990709984@163.com。
通信作者:朱瑞瑜,博士,副教授,研究方向为食品安全控制、功能性食品。E-mail:zhuruiyu7@126.com。
更新日期/Last Update: 2023-09-20