[1]王军,汪东方. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报,2021,37(4):199-207.
[2]王书志,乔虹,冯全,等. 基于显著性目标检测的葡萄叶片病害分割[J]. 湖南农业大学学报(自然科学版),2021,47(1):101-107.
[3]苏仕芳,乔焰,饶元. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报,2021,37(10):127-134.
[4]田有文,李天来,李成华,等. 基于支持向量机的葡萄病害图像识别方法[J]. 农业工程学报,2007,23(6):175-180.
[5]田有文. 基于纹理特征和支持向量机的葡萄病害的识别[J]. 仪器仪表学报,2005(增刊1):606-608.
[6]王利伟,徐晓辉,苏彦莽,等. 基于计算机视觉的葡萄叶部病害识别研究[J]. 江苏农业科学,2017,45(23):222-225.
[7]郑建华,朱立学,朱蓉. 基于多特征融合与支持向量机的葡萄病害识别[J]. 现代农业装备,2018(6):54-60.
[8]赵小川,何灏. 深度学习理论及实战(MATLAB版)[M]. 北京:清华大学出版社,2021:35-39.
[9]刘媛,冯全. 葡萄病害的计算机识别方法[J]. 中国农机化学报,2017,38(4):99-104.
[10]万军杰,祁力钧,卢中奥,等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报,2021,26(11):209-221.
[11]张梓婷,韩金玉,张东辉,等. 基于颜色矩的土豆、玉米、苹果叶片病害异常检测[J]. 浙江农业学报,2022,34(10):2230-2239.
[12]陈道怀,汪杭军. 基于改进YOLO v4的林业害虫检测[J]. 浙江农业学报,2022,34(6):1306-1315.
[13]王彦翔,张艳,杨成娅,等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报,2019,31(4):669-676.
[14]樊湘鹏,许燕,周建平,等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报,2021,37(6):151-159.
[15]何欣,李书琴,刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程,2021,47(5):285-291.
[16]刘阗宇,冯全,杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报,2018,49(3):73-83.
[17]乔虹,冯全,张芮,等. 基于时序图像跟踪的葡萄叶片病害动态监测[J]. 农业工程学报,2018,34(17):167-175.
[18]Krizhevsky A,Sutskever I,Hinton G E. Imagenet classification with deep convolutional neural networks[C]. Conference and Workshop on Neural Information Processing Systems (NIPS). 2012,25 (2):1097-1105.
[19]Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv,2014.
[20]Szegedy C,Liu W,Jia Y,et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:1-9.
[21]Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision. arXiv 2015[J]. arXiv preprint arXiv:1512.00567,2016,1512.
[22]Bianco S,Cadene R,Celona L,et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access,2018,6:64270-64277.
[23]刘阳,高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报,2021,37(2):187-195.
[24]李坤伦,魏泽发,宋焕生. 基于SqueezeNet卷积神经网络的车辆颜色识别[J]. 长安大学学报(自然科学版),2020,40(4):109-116.
[25]吴军,邱阳,卢忠亮. 基于改进的SqueezeNet的人脸识别[J]. 科学技术与工程,2019,19(11):218-223.
[26]余志锋,熊邦书,李新民,等. 基于改进的SqueezeNet直升机滚动轴承故障诊断[J]. 航空动力学报,2021,37(6):1162-1170.
[27]张玉皓,李立钢. 改进的SqueezeNet网络在船舶分类中的应用[J]. 传感器与微系统,2022,41(1):150-152.
[28]赵小川. 深度学习经典案例解析(基于MATLAB)[M]. 北京:机械工业出版社,2021:2-3.
[29]Chollet F. Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:1251-1258.
[30]李就好,林乐坚,田凯,等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报,2020,36(12):179-185.
[31]He K,Zhang X,Ren S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:770-778.
[32]Huang G,Liu Z,Van Der Maaten L,et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:4700-4708.
[33]Howard A G,Zhu M,Chen B,et al. Mobilenets:Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861,2017.
[34]肖伟,冯全,张建华,等. 基于小样本学习的植物病害识别研究[J]. 中国农机化学报,2021,42(11):138-143.
[35]Iandola F N,Han S,Moskewicz M W,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360,2016.
[36]Srivastava N,Hinton G,Krizhevsky A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research,2014,15(1):1929-1958.
[37]Szegedy C,Ioffe S,Vanhoucke V,et al. Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017.
[38]刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报,2019,35(17):194-204.
[39]周志华. 机器学习[M]. 北京:清华大学出版社,2016:28-33
[40]Van der Maaten L,Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research,2008,9(11):2579-2605.
[41]张宏丽,白翔宇. 利用优化剪枝GoogLeNet的人脸表情识别方法[J]. 计算机工程与应用,2021,57(19):179-188.
[42]苏宝峰,沈磊,陈山,等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报,2021,52(11):226-233.
[43]孙红,乔金博,李松,等. 基于深度学习的玉米拔节期冠层识别方法及检测装置研制[J]. 农业工程学报,2021,37(21):53-61.
[1]武海,田立国,汪建国,等.基于NI-DAQmx 的植物电信号检测系统[J].江苏农业科学,2014,42(12):326.
Wu Hai,et al.Study on plant electrical signal detection system based on NI-DAQmx[J].Jiangsu Agricultural Sciences,2014,42(19):326.
[2]郝婧,刘桂礼,李响.基于近红外光谱和LabVIEW技术的番茄抗灰霉病检测系统[J].江苏农业科学,2016,44(11):408.
Hao jing,et al.Design of testing system for tomato Botrytis cinerea based on near-infrared spectroscopy and LabVIEW[J].Jiangsu Agricultural Sciences,2016,44(19):408.
[3]王利伟,徐晓辉,苏彦莽,等.基于计算机视觉的葡萄叶部病害识别研究[J].江苏农业科学,2017,45(23):222.
Wang Liwei,et al.Study on recognition of grape leaf diseases based on computer vision[J].Jiangsu Agricultural Sciences,2017,45(19):222.
[4]戴久竣,马肄恒,吴坚,等.基于改进残差网络的葡萄叶片病害识别[J].江苏农业科学,2023,51(5):208.
Dai Jiujun,et al.Grape leaf disease identification based on improved residual network[J].Jiangsu Agricultural Sciences,2023,51(19):208.
[5]张立强,武玲梅,蒋林利,等.基于改进YOLO v8s的葡萄叶片病害检测[J].江苏农业科学,2024,52(21):221.
Zhang Liqiang,et al.Detection of grape leaf disease based on improved YOLO v8s[J].Jiangsu Agricultural Sciences,2024,52(19):221.
[6]刘宇雄,兰艳亭,陈晓栋.基于级联式分组注意力机制的葡萄病害识别模型[J].江苏农业科学,2025,53(5):121.
Liu Yuxiong,et al.Grape disease recognition model based on cascaded group attention mechanism[J].Jiangsu Agricultural Sciences,2025,53(19):121.