[1]傅俊范,景殿玺,刘震,等. 玉米叶部病害流行动态及预测预警研究进展[J]. 吉林农业大学学报,2016,38(6):651-655.
[2]曲维莉. 玉米常见病害防治措施[J]. 农民致富之友,2018(13):139.
[3]李颖. 玉米主要病虫害综合防治技术探究[J]. 农家参谋,2022(16):60-62.
[4]Dhakal A,Shakya S. Image-based plant disease detection with deep learning[J]. International Journal Computer Trends Technology,2018,61(1):26-29.
[5]Ngugi L,Abelwahab M,Abo-Zahhad M. Recent advances in image processing techniques for automated leaf pest and disease recognition-a review[J]. Information Processing in Agriculture,2021,8(1):27-51.
[6]赵春江,李瑾,冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学,2021,23(4):1-9.
[7]Panigrah K P,Das H,Sahoo A K,et al. Maize leaf disease detection and classification using machine learning algorithms[J]. Advances in Intelligent Systems and Computing,2020,1119:659-669.
[8]吕洁,卖雄发,谢妙. 基于二维Gabor小波和孪生支持向量机的图像识别算法[J]. 南京理工大学学报,2022,46(1):113-118.
[9]Wagle S A,Harikrishna R. Comparison of plant leaf classification using modified AlexNet and support vector machine[J]. Traitement du Signal:Signal Image Parole,2021,38(1):79-87.
[10]Lecun Y,Bengio Y,Hinton G. Deep learning[J]. Nature,2015,521(1):436-444.
[11]Priyandarshini R A,Arivazhagan S,Arun M,et al. Maize leaf disease classification using deep convolutional neural networks[J]. Neural Computer & Application,2019,31(1):8887-8895.
[12]黄英来,艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用,2021,54(23):178-184.
[13]刘合兵,鲁笛,席磊. 基于MobileNetV2和迁移学习的玉米病害识别研究[J]. 河南农业大学学报,2022,56(6):1041-1051.
[14]Singh R K,Tiwari A,Gupta R K. Deep transfer modeling for classification of maize plant leaf disease[J]. Multimedia Tools and Application,2022,81(5):6051-6067.
[15]Lin Z,Mu S,Shi A,et al. A novel method of maize leaf disease image identification based on a multichannel convolutional neural network[J]. Transaction of the ASABE,2018,61 (5):1461-1474.
[16]Xu Y L,Zhao B,Zhai Y T,et al. Maize diseases identification method based on multi-scale convolutional global pooling neural network[J]. IEEE Access,2021,9:27959-27970.
[17]Fujita E,Kawaski Y,Uga H,et al. Basic investigation on a robust and practical plant diagnostic system[J]. IEEE International Conference Machine Learning Applications,2016,15:989-992.
[18]管正雄. 基于深度生成模型的数据增强方法研究[D]. 南京:南京信息工程大学,2019.
[19]Hughes D P ,Salathe M . An open access repository of images on plant health to enable the development of mobile disease diagnostics[J]. Computer Science,2015,1:1-13.
[20]张宸嘉,朱磊,俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用,2021,57(20):64-72.
[21]Guo W J,Feng Q,Li X Z,et al. Grape leaf disease detection based on attention mechanisms[J]. International Journal of Agricultural and Biological Engineering,2022,15(5):205-212.
[22]Wang Y Y,Tao J,Gao H. Corn disease recognition based on attention mechanism network[J]. Axioms,2022,11(9):480.
[23]Zhang M,Su H,Wen J.Classification of flower image based on attention mechanism and multi-loss attention network[J]. Computer Communications,2021,179(1):307-317.
[24]Qian Z Z,Mu J,Tian F,et al. Facial expression recognition based on strong attention mechanism and residual network[J]. Multimedia Tools and Applications,2022,81(30):44109-44121.
[25]Hu J,Shen L,Albanie S,et al. Squeeze-and-excitation networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:7132-7141.
[26]Wang Q,Wu B,Zhu P,et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2020:1-12.
[27]Li X,Wang W,Hu X,et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2019:1-12.
[28]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//Proceeding of the European Conference on Computer Vision(ECCV),2018:3-19.
[29]Liu Z,Mao H,Wu C Y,et al. A ConvNet for the 2020s[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2022:11976-11986.
[30]He K,Zhang X,Ren S,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[31]Liu Z,Lin Y,Cao Y,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision,2021:10012-10022.
[32]Xu B,Li M,Wang N,et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv,2015,27:1-5.
[33]肖经纬,田军委,王沁,等. 基于改进残差网络的果实病害分类方法[J]. 计算机工程,2020,46(9):221-225.
[34]宋亚飞,王晓丹,雷蕾. 基于混淆矩阵的证据可靠性评估[J]. 系统工程与电子技术,2015,37(4):974-978.
[1]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(19):178.
[2]曾晏林,贺壹婷,蔺瑶,等.基于BCE-YOLOv5的苹果叶部病害检测方法[J].江苏农业科学,2023,51(15):155.
Zeng Yanlin,et al.An apple leaf disease detection method based on BCE-YOLOv5[J].Jiangsu Agricultural Sciences,2023,51(19):155.
[3]谭彬,蔡健荣,许骞,等.基于注意力机制改进卷积神经网络的柑橘病虫害识别[J].江苏农业科学,2024,52(8):176.
Tan Bin,et al.Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks[J].Jiangsu Agricultural Sciences,2024,52(19):176.
[4]王晶,崔艳荣.基于改进MobileNet v3-Small模型的草莓病害识别方法[J].江苏农业科学,2024,52(10):225.
Wang Jing,et al.Strawberry disease identification method based on improved MobileNet v3-Small model[J].Jiangsu Agricultural Sciences,2024,52(19):225.
[5]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216.
Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(19):216.
[6]李豫晋,沈陆明,何少芳,等.基于改进MobileNet v3的苹果叶片病害识别研究[J].江苏农业科学,2024,52(12):224.
Li Yujin,et al.Identification of apple leaf diseases based on improved MobileNet v3[J].Jiangsu Agricultural Sciences,2024,52(19):224.
[7]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(19):214.
[8]杨德龙,李婧.基于注意力与小平方核的ConvNeXt农业杂草识别方法[J].江苏农业科学,2024,52(14):207.
Yang Delong,et al.ConvNeXt agricultural weed recognition method based on attention and small square kernel[J].Jiangsu Agricultural Sciences,2024,52(19):207.
[9]梁倩倩,陈勇,崔艳荣.基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法[J].江苏农业科学,2024,52(14):222.
Liang Qianqian,et al.An apple leaf pest identification method based on improved lightweight network MobileViT[J].Jiangsu Agricultural Sciences,2024,52(19):222.
[10]戴硕,白涛,李东亚,等.基于知识蒸馏及改进ShuffleNet v2的棉花病虫害识别方法[J].江苏农业科学,2024,52(15):222.
Dai Shuo,et al.Recognition of cotton pests and diseases based on knowledge distillation and improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(19):222.