[1]Li D S,Wang R J,Xie C J,et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors,2020,20(3):578.
[2]Yang G F,Chen G P,Li C,et al. Convolutional rebalancing network for the classification of large imbalanced rice pest and disease datasets in the field[J]. Frontiers in Plant Science,2021,12:671134.
[3]Li L L,Zhang S J,Wang B. Plant disease detection and classification by deep learning-a review[J]. IEEE Access,2021,9:56683-56698.
[4]Kharim M,Wayayok A,Abdullah A,et al. Predictive zoning of pest and disease infestations in rice field based on UAV aerial imagery[J]. The Egyptian Journal of Remote Sensing and Space Science,2022,25(3):831-840.
[5]Larijani M,Asli A,Kozegar E,et al. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means[J]. Food Science & Nutrition,2019,7(12):3922-3930.
[6]Xiao D Q,Feng J Z,Lin T Y,et al. Classification and recognition scheme for vegetable pests based on the BOF-SVM model[J]. International Journal of Agricultural and Biological Engineering,2018,11(3):190-196.
[7]Chen J,Lian Y,Li Y M. Real-time grain impurity sensing for rice combine harvesters using image processing and decision-tree algorithm[J]. Computers and Electronics in Agriculture,2020,175:105591.
[8]Sangeetha T,Lavanya G,Mythili K,et al. Detection of pest and disease in banana leaf using convolution Random Forest[J]. Test Eng Manag,2020,83:3727-3735.
[9]Sun D Q,Rickaille M,Xu Z G. Determinants and impacts of outsourcing pest and disease management:evidence from Chinas rice production[J]. China Agricultural Economic Review,2018,10(3):443-461.
[10]He Y,Zhou Z Y,Tian L H,et al. Brown rice planthopper (Nilaparvata lugens Stal) detection based on deep learning[J]. Precision Agriculture,2020,21(6):1385-1402.
[11]卫雅娜,王志彬,乔晓军,等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报,2022,43(11):172-181.
[12]梁勇,邱荣洲,李志鹏,等. 基于YOLO v5和多源数据集的水稻主要害虫识别方法[J]. 农业机械学报,2022,53(7):250-258.
[13]曾伟辉,张文凤,陈鹏,等. 基于SCResNeSt的低分辨率水稻害虫图像识别方法[J]. 农业机械学报,2022,53(9):277-285.
[14]Li Y,Qian M Y,Liu P F et al. The recognition of rice images by UAV based on capsule network[J]. Cluster Computing,2019,22:9515-9524.
[15]肖小梅,杨红云,易文龙,等. 改进的Alexnet模型在水稻害虫图像识别中的应用[J]. 科学技术与工程,2021,21(22):9447-9454.
[16]Rahman C,Arko P,Ali M,et al. Identification and recognition of rice diseases and pests using convolutional neural networks[J]. Biosystems Engineering,2020,194:112-120.
[17]鲍文霞,吴德钊,胡根生,等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报,2021,37(16):145-152.
[18]Chang Z B,Lu Y G,Wang X W,et al. MGNet:Mutual-guidance network for few-shot semantic segmentation[J]. Engineering Applications of Artificial Intelligence,2022,116:105431.
[19]Han K,Wang Y H,Chen H T,et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):87-110.
[20]Li G,Jampani V,Sevilla-Lara L,et al. Adaptive prototype learning and allocation for few-shot segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8334-8343.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(20):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(20):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(20):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(20):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(20):90.
[11]雷建云,陈楚,郑禄,等.基于改进残差网络的水稻害虫识别[J].江苏农业科学,2022,50(14):190.
Lei Jianyun,et al.Identification of rice pests based on improved residual network[J].Jiangsu Agricultural Sciences,2022,50(20):190.