|本期目录/Table of Contents|

[1]李靖言,颜安,宁松瑞,等.基于高光谱植被指数的春小麦LAI和SPAD值及产量反演模型研究[J].江苏农业科学,2023,51(20):201-210.
 Li Jingyan,et al.Inversion model of LAI and SPAD values and yield of spring wheat based on hyperspectral vegetation index[J].Jiangsu Agricultural Sciences,2023,51(20):201-210.
点击复制

基于高光谱植被指数的春小麦LAI和SPAD值及产量反演模型研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第20期
页码:
201-210
栏目:
农业工程与信息技术
出版日期:
2023-10-20

文章信息/Info

Title:
Inversion model of LAI and SPAD values and yield of spring wheat based on hyperspectral vegetation index
作者:
李靖言1颜安2宁松瑞3孙萌2范君2左筱筱2
1.新疆农业大学计算机与信息工程学院,新疆乌鲁木齐 830052; 2.新疆农业大学资源与环境学院,新疆乌鲁木齐 830052; 3. 西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西西安 710048
Author(s):
Li Jingyanet al
关键词:
春小麦生物有机肥氮肥减施高光谱特征机器学习
Keywords:
-
分类号:
S127;TP79
DOI:
-
文献标志码:
A
摘要:
快速、准确地获取春小麦生长特征及产量对科学施肥有重要意义。为探索高光谱估测不同施肥处理春小麦叶面积指数(LAI)、叶绿素相对含量(SPAD值)和产量的方法,本研究采用盆栽试验,以不施肥(CK)和常规施肥(CF,常规施氮量120 kg/hm2)处理为对照,设置常规施肥减氮处理(N1,常规施氮量减少15%;N2,常规施氮量减少30%)与生物有机肥处理(2种类型:A和B,2个施量:1 125、2 250 kg/hm2)配施试验,分析春小麦LAI、SPAD值和产量及其冠层高光谱特征。主要结论:(1)B处理春小麦LAI、SPAD值的平均值和产量均高于A处理,N2B1处理的春小麦LAI、SPAD值及产量均最高。(2)在可见光波段下,施生物有机肥处理的“绿峰”和“红谷”特征差异比CK显著增强。随施氮量、生物有机肥施量的升高,近红外波段下春小麦冠层高光谱反射率也随之升高;建议用500~550 nm和670~800 nm 波段的春小麦冠层一阶微分高光谱特征识别春小麦的LAI和SPAD值。(3)优选与春小麦LAI、SPAD值指标较为敏感的不同植被指数构建4种[决策树回归(decision tree regression)、随机森林回归(random forest regression)、梯度提升回归(gradient boosting regression)以及线性支持向量机回归(Linear SVR)]机器学习模型,结果表明,采用线性支持向量机回归模型反演春小麦叶面积指数的效果最好(r2=0.723 3,RMSE=0.256 9),采用梯度提升回归模型反演春小麦SPAD值的效果最好(r2=0.759 4,RMSE=2.332 9),采用决策树回归模型反演春小麦产量的效果最好(r2=0809 8,RMSE=597.842 4 kg/hm2)。
Abstract:
-

参考文献/References:

[1]王冀川,高山,徐雅丽,等. 新疆小麦滴灌技术的应用与存在问题[J]. 节水灌溉,2011(9):25-29.
[2]高峰. 新疆夏粮喜获丰收[N]. 新疆日报,2022-07-25(1).
[3]于飞,施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报,2015,52(6):1311-1324.
[4]王朝辉. 粮食作物养分管理与农业绿色发展[J]. 中国农业科学,2018,51(14):2719-2721.
[5]李伟.中国小麦生产的时空演变特征及其影响因素分析[J]. 中国农业资源与区划,2019,40(10):49-57.
[6]刘涛,张寰,王志业,等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报,2021,37(19):65-72.
[7]黄艺华,蒋桂英,王海琪,等. 氮肥基追比对滴灌春小麦群体质量及产量的影响[J]. 西北农业学报,2021,30(6):807-818.
[8]Janusauskaite D,Feiziene D,Feiza V. The effect of tillage,fertilization and residue management on winter wheat and spring wheat physiological performance[J]. Acta Physiologiae Plantarum,2022,44(7):75.
[9]李盛阳,刘志文,刘康,等. 航天高光谱遥感应用研究进展[J]. 红外与激光工程,2019,48(3):9-23.
[10]凌成星,刘华,鞠洪波,等. 地面成像和非成像地物光谱仪在不同水分环境下湿地植被光谱特征对比研究:以东洞庭湖湿地区域苔草植被光谱特征为例[J]. 测绘与空间地理信息,2018,41(4):1-4,7.
[11]邵国敏,王亚杰,韩文霆. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法[J]. 智慧农业(中英文),2020,2(3):118-128.
[12]Lin C Y,Lin C.Using ridge regression method to reduce estimation uncertainty in chlorophyll models based on worldview multispectral data[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE,2019:1777-1780.
[13]Peichl M,Thober S,Samaniego L,et al. Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany[J]. Hydrology and Earth System Sciences,2021,25(12):6523-6545.
[14]Bhadra S,Sagan V,Maimaitijiang M,et al. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning[J]. Remote Sensing,2020,12(13):2082.
[15]Liang L A,Geng D,Yan J A,et al. Estimating crop LAI using spectral feature extraction and the hybrid inversion method[J]. Remote Sensing,2020,12(21):3534.
[16]Reisi Gahrouei O,McNairn H,Hosseini M,et al. Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches[J]. Canadian Journal of Remote Sensing,2020,46(1):84-99.
[17]Yang X,Yang R,Ye Y,et al. Winter wheat SPAD estimation from UAV hyperspectral data using cluster-regression methods[J]. International Journal of Applied Earth Observation and Geoinformation,2021,105:102618.
[18]李浩然,李雁鸣,李瑞奇. 灌溉和施氮对小麦产量形成及土壤肥力影响的研究进展[J]. 麦类作物学报,2022,42(2):196-210.
[19]朱荣,柳丽丽,齐永波,等. 稻田氨挥发和水稻产量对增效复合肥减氮施用的响应[J]. 农业环境科学学报,2021,40(9):1935-1943.
[20]魏文良,刘路,仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J]. 植物营养与肥料学报,2020,26(8):1384-1394.
[21]陈崇怡,石楠,文双雅,等. 杂交稻增密减肥处理的SPAD值光谱估算模型[J]. 激光生物学报,2021,30(3):250-258.
[22]郭建彪,马新明,时雷,等. 冬小麦叶面积指数的品种差异性与高光谱估算研究[J]. 麦类作物学报,2018,38(3):340-347.
[23]王嘉盼,武红旗,王德俊,等. 基于无人机可见光影像与生理指标的小麦估产模型研究[J]. 麦类作物学报,2021,41(10):1307-1315.
[24]张松,冯美臣,杨武德,等. 基于高光谱植被指数的冬小麦产量监测[J]. 山西农业科学,2018,46(4):572-575.
[25]Hayati D,Prasetyo S Y J. Prediksi spasial wilayah resiko tanah longsor di jawa tengah berdasarkan SAVI,OSAVI,DVI,NDVI menggunakan krigging[J]. Indonesian Journal of Computing and Modeling,2018,1(2):80-86.
[26]Jiang Z Y,Huete A R,Didan K,et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment,2008,112(10):3833-3845.
[27]Wilson N R,Norman L M. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)[J]. International Journal of Remote Sensing,2018,39(10):3243-3274.
[28]le Maire G,Franois C,Dufrêne E.Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment,2004,89(1):1-28.
[29]Yuki H,Zumpf C R,Cacho Jules F,et al. Remote sensing-based estimation of advanced perennial grass biomass yields for bioenergy[J]. Land,2021,10(11):1221.
[30]Wu C Y,Niu Z,Tang Q,et al. Estimating chlorophyll content from hyperspectral vegetation indices:modeling and validation[J]. Agricultural and Forest Meteorology,2008,148(8/9):1230-1241.
[31]Sims D A,Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages[J]. Remote Sensing of Environment,2002,81(2/3):337-354.
[32]Dash J,Curran P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing,2004,25(23):5403-5413.
[33]Hansen P M,Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86(4):542-553.
[34]Chu X,Guo Y J,He J Y,et al. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice[J]. Agronomy Journal,2014,106:1911-1920.
[35]Datt B.Remote sensing of chlorophyll a,chlorophyll b,chlorophyll a+b,and total carotenoid content in Eucalyptus leaves[J]. Remote Sensing of Environment,1998,66(2):111-121.
[36]Steddom K,Heidel G,Jones D,et al. Remote detection of rhizomania in sugar beets[J]. Phytopathology,2003,93(6):720-726.
[37]Gitelson A,Merzlyak M N. Quantitative estimation of chlorophyll-a using reflectance spectra:experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B:Biology,1994,22(3):247-252.
[38]Din M,Ming J,Hussain S,et al. Estimation of dynamic canopy variables using hyperspectral derived vegetation indices under varying N rates at diverse phenological stages of rice[J]. Frontiers in Plant Science,2019,9:1883.
[39]薛利红,曹卫星,罗卫红,等. 小麦叶片氮素状况与光谱特性的相关性研究[J]. 植物生态学报,2004,28(2):172-177.
[40]Shibayama M,Akiyama T. Seasonal visible,near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment,1989,27(2):119-127.
[41]贾学勤,冯美臣,杨武德,等. 基于多植被指数组合的冬小麦地上干生物量高光谱估测[J]. 生态学杂志,2018,37(2):424-429.
[42]Nejatian A,Makian M,Gheibi M,et al. A novel viewpoint to the green city concept based on vegetation area changes and contributions to healthy days:a case study of Mashhad,Iran[J]. Environmental Science and Pollution Research,2022,29(1):702-710.
[43]Serrano L,Peuelas J,Ustin S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data[J]. Remote Sensing of Environment,2002,81(2/3):355-364.
[44]刘静,马力文,张学艺. 宁夏灌区春小麦LAI与生长性状和产量的关系[J]. 干旱气象,2017,35(3):358-366.
[45]茹京娜,于洋,董凡凡,等. 小麦抽穗期QTL及其与环境的互作[J]. 麦类作物学报,2014,34(9):1185-1190.
[46]赵春江,黄文江,王纪华,等. 不同品种、肥水条件下冬小麦光谱红边参数研究[J]. 中国农业科学,2002,35(8):980-987.
[47]赵春江. 农业遥感研究与应用进展[J]. 农业机械学报,2014,45(12):277-293.
[48]时鸣,竞霞,史晓亮. 基于高光谱和GA-BP神经网络模型的冬小麦叶绿素含量反演[J]. 江苏农业科学,2022,50(20):56-62.
[49]李映雪,朱艳,曹卫星. 不同施氮条件下小麦冠层的高光谱和多光谱反射特征[J]. 麦类作物学报,2006,26(2):103-108.
[50]耿石英,孙华林,王小燕,等. 不同氮肥处理下小麦冠层和叶片光谱特征及产量分析[J]. 光谱学与光谱分析,2018,38(11):3534-3540.
[51]卢艳丽,李少昆,白由路,等. 冬小麦冠层光谱红边参数的变化及其与氮素含量的相关分析[J]. 遥感技术与应用,2007,22(1):1-7.
[52]姚付启,蔡焕杰,李亚龙,等. 基于红边参数的冬小麦SPAD高光谱遥感监测[J]. 中国农村水利水电,2015(3):84-87.
[53]高雨茜. 夏玉米叶绿素、叶面积指数高光谱估测研究[D]. 杨凌:西北农林科技大学,2016.
[54]梁栋,管青松,黄文江,等. 基于支持向量机回归的冬小麦叶面积指数遥感反演[J]. 农业工程学报,2013,29(7):117-123.
[55]李怡静,孙晓敏,郭玉银,等. 基于梯度提升决策树算法的鄱阳湖水环境参数遥感反演[J]. 航天返回与遥感,2020,41(6):90-102.
[56]Kalichkin V K,Alsova O K,Maksimovich K Y. Application of the decision tree method for predicting the yield of spring wheat[J]. Earth and Environmental Science,2021,839(3):032042.

相似文献/References:

[1]刘海波,魏玉清.盐胁迫对甜高粱和春小麦种子萌发影响的比较研究[J].江苏农业科学,2016,44(05):142.
 Liu Haibo,et al.Comparative study on effects of salt stress on seed germination between sweet sorghum and spring wheat[J].Jiangsu Agricultural Sciences,2016,44(20):142.
[2]王长军,王肇陟,王世荣.生物有机肥、腐殖酸对水稻产量和土壤化学性质的影响[J].江苏农业科学,2016,44(01):93.
 Wang Zhangjun,et al.Effects of microbial organic fertilizer and humic acid on rice yield and soil chemical properties[J].Jiangsu Agricultural Sciences,2016,44(20):93.
[3]张双喜,季新梅,李红霞,等.30年来宁夏引黄灌区春小麦优良品种(系)的产量构成因素分析及高产育种展望[J].江苏农业科学,2015,43(11):100.
 Zhang Shuangxi,et al.Yield components analysis and high yield breeding perspective for superior varieties of Ningxia spring wheat in Yellow River irrigation districts over 30 year[J].Jiangsu Agricultural Sciences,2015,43(20):100.
[4]吴晓卫,付瑞敏,郭彦钊,等.耐盐碱微生物复合菌剂的选育、复配及其 对盐碱地的改良效果[J].江苏农业科学,2015,43(06):346.
 Wu Xiaowei,et al.Breeding and combination of saline-alkaline-tolerant microbes and their ameliorative effect on saline soils[J].Jiangsu Agricultural Sciences,2015,43(20):346.
[5]樊明,杨滨齐,李红霞,等.不同生态类型春小麦的光合生理特性差异[J].江苏农业科学,2015,43(04):87.
 Fan Ming,et al.Difference of photosynthetic physiological characteristics of different ecological types of spring wheat[J].Jiangsu Agricultural Sciences,2015,43(20):87.
[6]樊明,李红霞,张双喜,等.宁夏引黄灌区不同春小麦新品种(系)的产量潜力[J].江苏农业科学,2014,42(07):80.
 Fan Ming,et al.Yield potential of different spring wheat varieties(lines) in Yellow River irrigation districts of Ningxia[J].Jiangsu Agricultural Sciences,2014,42(20):80.
[7]刘海波,魏玉清,周维松,等.NaCl胁迫对萌发期甜高粱和春小麦生理生化特性的影响[J].江苏农业科学,2016,44(08):106.
 Liu Haibo,et al.Effect of NaCl stress on physiological and biochemical characteristics between sweet sorghum and spring wheat[J].Jiangsu Agricultural Sciences,2016,44(20):106.
[8]王传凯,郭淼,杨青华.温度和光照度对春小麦幼苗生长及生化组成的影响[J].江苏农业科学,2017,45(15):69.
 Wang Chuankai,et al.Effects of temperature and light intensity on seedling growth and biochemical composition of spring wheat[J].Jiangsu Agricultural Sciences,2017,45(20):69.
[9]张兵,范泽华,姚江河,等.基于近红外光谱与多元模型的小麦氮含量估算[J].江苏农业科学,2016,44(09):374.
 Zhang Bing,et al.Estimation of wheat nitrogen content based on near infrared spectra and multivariate model[J].Jiangsu Agricultural Sciences,2016,44(20):374.
[10]朱荣,李亚婷,虎芳芳,等.花后干旱对春小麦荧光动力学参数的影响[J].江苏农业科学,2016,44(10):139.
 Zhu Rong,et al.Effect of drought after anthesis on fluorescence kinetic parameters of spring wheat[J].Jiangsu Agricultural Sciences,2016,44(20):139.

备注/Memo

备注/Memo:
收稿日期:2023-01-12
基金项目:新疆维吾尔自治区重点研发任务专项计划(编号:2022B02003);国家自然科学基金(编号:42007008、32160527)。
作者简介:李靖言(1995—),男,黑龙江勃利人,硕士,主要从事无人机遥感研究。E-mail:2225435607@qq.com。
通信作者:颜安,博士,教授,主要从事数字农业与生态环境遥感监测研究。E-mail:yanan@xjau.edu.cn。
更新日期/Last Update: 2023-10-20