[1]王云露,吴杰芳,兰鹏,等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报,2022,7(1):153-159.
[2]Jiang P,Chen Y H,Liu B,et al. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks[J]. IEEE Access,2019,7:59069-59080.
[3]Sun H N,Xu H W,Liu B,et al. MEAN-SSD:a novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks[J]. Computers and Electronics in Agriculture,2021,189:106379.
[4]刘斌,徐皓玮,李承泽,等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报,2022,53(6):286-294.
[5][JP3]Simonyan K,Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-06-10]. https://arxiv.org/abs/1409.1556.
[6]Szegedy C,Liu W,Jia Y Q,et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston,2015:1-9.
[7]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,2016:770-778.
[8]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[9]Lin T Y,Dollár P,Girshick R,et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,2017:936-944.
[10]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,2016:779-788.
[11]Liu W,Anguelov D,Erhan D,et al. SSD:single shot MultiBox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[12]Yang Q,Duan S K,Wang L D. Efficient identification of apple leaf diseases in the wild using convolutional neural networks[J]. Agronomy,2022,12(11):2784.
[13]Hughes D P,Salathe M.An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. (2016-04-12)[2023-06-10]. https://arxiv.org/abs/1511.08060.
[14]Feng J Z,Chao X F. Apple tree leaf disease segmentation dataset[DS/OL]. (2022-03-31) [2023-06-10]. https://doi.org/10.11922/sciencedb.01627.
[15]Thapa R,Zhang K,Snavely N,et al. The Plant Pathology Challenge 2020 data set to classify foliar disease of apples[J]. Applications in Plant Sciences,2020,8(9):e11390.
[16]Liu S,Qi L,Qin H F,et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,2018:8759-8768.
[17]Liu Z,Mao H Z,Wu C Y,et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,2022:11966-11976.
[18]Pan X R,Ge C J,Lu R,et al. On the integration of self-attention and convolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,2022:805-815.
[19]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[20]Li X,Wang W H,Hu X L,et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,2020:510-519.
[21]Lin T Y,Goyal P,Girshick R,et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice,2017:2999-3007.
[1]赵方,左官芳,顾思睿,等.基于改进YOLO v5s的温室番茄检测模型轻量化研究[J].江苏农业科学,2024,52(8):200.
Zhao Fang,et al.Lightweight research of greenhouse tomato detection model based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2024,52(23):200.
[2]朱齐齐,陈西曲.基于改进YOLO v5的轻量级果园苹果检测算法[J].江苏农业科学,2024,52(17):200.
Zhu Qiqi,et al.Lightweight orchard apple detection algorithm based on improved YOLO v5[J].Jiangsu Agricultural Sciences,2024,52(23):200.
[3]高泉,刘笠溶,张洁,等.基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计[J].江苏农业科学,2024,52(20):220.
Gao Quan,et al.Tomato disease identification and system design based on ActNN-YOLO v5s-RepFPN[J].Jiangsu Agricultural Sciences,2024,52(23):220.
[4]贺洪江,刘毅祥,王双友.基于改进YOLO v5s的叶菜病虫害检测算法研究[J].江苏农业科学,2025,53(5):244.
He Hongjiang,et al.Study on foliage vegetable disease and pest detection algorithm based on improved YOLO v5s[J].Jiangsu Agricultural Sciences,2025,53(23):244.
[5]史鹏涛,田政伟,李晓泽,等.基于改进YOLO v5s算法的红枣缺陷检测与分拣方法[J].江苏农业科学,2025,53(5):83.
Shi Pengtao,et al.Defect detection and sorting method of jujube based on improved YOLO v5s algorithm[J].Jiangsu Agricultural Sciences,2025,53(23):83.
[6]曾林涛,马嘉昕,丁羽,等.基于改进YOLO v8的苹果叶部病害检测方法[J].江苏农业科学,2025,53(5):147.
Zeng Lintao,et al.An apple leaf disease detection method based on improved YOLO v8[J].Jiangsu Agricultural Sciences,2025,53(23):147.