|本期目录/Table of Contents|

[1]施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175-183.
 Shi Jie,et al.Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model[J].Jiangsu Agricultural Sciences,2023,51(24):175-183.
点击复制

基于YOLO v5s改进模型的玉米作物病虫害检测方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第24期
页码:
175-183
栏目:
农业工程与信息技术
出版日期:
2023-12-20

文章信息/Info

Title:
Study on a detection method for crop diseases and insect pests based on YOLO v5s improved model
作者:
施杰林双双罗建刚杨琳琳张毅杰顾丽春
云南农业大学机电工程学院,云南昆明 650201
Author(s):
Shi Jieet al
关键词:
玉米作物病虫害YOLO v5s改进模型注意力机制EIOU目标检测
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
针对玉米作物病虫害目标检测中由于图像背景复杂、无关因素干扰较多而导致的对病虫害目标检测效果不理想等问题,采用深度学习技术,提出一种基于YOLO v5s改进模型的玉米作物病虫害检测方法。该方法通过引入无参SimAM注意力机制对YOLO v5s模型进行改进,利用该机制能更全面地评估模型特征权重,以增强玉米病虫害的特征,削弱复杂背景和无关信息的干扰,从而提高模型的检测性能。同时,将模型的损失函数由CIOU替换为EIOU,可使病虫害预测框更加接近真实框,以提升模型检测的准确率。通过自建的玉米病虫害数据集对模型进行试验对比,结果表明,YOLO v5s(EIOU+SimAM)改进模型的精确率为94.6%,召回率为83.4%,平均精度均值为90.1%。经比较发现,改进模型比原始模型在上述3个指标方面分别提升了5.4、0.5、1.9百分点,说明YOLO v5s(EIOU+SimAM)模型对玉米病虫害检测具有较强的鲁棒性和泛化性。
Abstract:
-

参考文献/References:

[1]代瑞熙,徐伟平. 中国玉米增产潜力预测[J]. 农业展望,2022,18(3):41-49.
[2]安艳丽. 玉米常见病害的识别与防治[J]. 农业与技术,2017,37(18):44.
[3]王文明. 玉米常见病虫害防治措施探讨[J]. 农业开发与装备,2017(12):149,151.
[4]Ren S Q,He K M,Girshick R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[5]Liu W,Anguelov D,Erhan D,et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision 2016. Cham:Springer International Publishing,2016:21-37.
[6]陈桂珍,龚声蓉. 计算机视觉及模式识别技术在农业生产领域的应用[J]. 江苏农业科学,2015,43(8):409-413.
[7]周维,牛永真,王亚炜,等. 基于改进的YOLO v4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[8]Woebbecke D M,Meyer G E,Von Bargen K,et al. Color indices for weed identification under various soil,residue,and lighting conditions[J]. Transactions of the ASAE,1995,38(1):259-269.
[9]El-Faki M S,Zhang N,Peterson D E. Weed detection using color machine vision[J]. Transactions of the ASAE,2000,43(6):1969-1978.
[10]毛文华,王辉,赵博,等. 基于株心颜色的玉米田间杂草识别方法[J]. 农业工程学报,2009,25(增刊2):161-164.
[11]孟庆宽,张漫,杨晓霞,等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报,2020,51(12):238-245,303.
[12]徐会杰,黄仪龙,刘曼. 基于改进YOLO v3模型的玉米叶片病虫害检测与识别研究[J]. 南京农业大学学报,2022,45(6):1276-1285.
[13]胡文泽,王宝聚,耿丽杰,等. 基于Cascade R-CNN的玉米幼苗检测[J]. 农机化研究,2023,45(5):26-31.
[14]陈玉冲,龙梦玲,郭辉,等. 灰飞虱研究的文献计量分析[J]. 江苏科技信息,2021,38(15):22-25,53.
[15]杨春媛. 玉米常见病害的发病症状及防治措施[J]. 乡村科技,2017(24):63-64.
[16]路兴涛,吴翠霞,张勇,等. 玉米灰飞虱与粗缩病的发生规律及综合防治策略[J]. 安徽农业科学,2013,41(19):8168-8169.
[17]Redmon J,Divvala S,Girshick R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vagas:IEEE,2016:779-788.
[18]Zhai N. Detection using YOLO v5n and YOLO v5s with small balls[C]//International Conference on Computer Graphics,Artificial Intelligence,and Data Processing. SPIE,2022,12168:428-432.
[19]Bochkovskiy A,Wang C Y,Liao H Y M. YOLO v4:optimal speed and accuracy of object detection[J]. arXiv,2020,2004:10934.
[20]郭磊,王邱龙,薛伟,等. 基于改进YOLO v5的小目标检测算法[J]. 电子科技大学学报,2022,51(2):251-258.
[21]范晓飞,王林柏,刘景艳,等. 基于改进YOLO v4的玉米种子外观品质检测方法[J]. 农业机械学报,2022,53(7):226-233.
[22]王鹏飞,黄汉明,王梦琪. 改进YOLO v5的复杂道路目标检测算法[J]. 计算机工程与应用,2022,58(17):81-92.
[23]孙丰刚,王云露,兰鹏,等. 基于改进YOLO v5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报,2022,38(11):171-179.
[24]李惠惠,范军芳,陈启丽.改进YOLO v5的遥感图像目标检测[J]. 弹箭与制导学报,2022,42(4):17-23.
[25]彭红星,何慧君,高宗梅,等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报,2022,53(12):290-300.
[26]Yu J H,Jiang Y N,Wang Z Y,et al. Unitbox:an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York:ACM,2016:516-520.
[27]Zhang Y F,Ren W,Zhang Z,et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-03-16
基金项目:国家自然科学基金(编号:32260438);云南省教育厅科学研究基金(编号:2022J0307)。
作者简介:施杰(1981—),男,云南昆明人,博士,副教授,硕士生导师,主要从事农业智能装备、机械故障诊断技术研究。E-mail:km_shijie@126.com。
通信作者:顾丽春,硕士,实验师,主要从事农业信息化研究。E-mail:307524527@qq.com。
更新日期/Last Update: 2023-12-20