|本期目录/Table of Contents|

[1]毛峥沣,钟小仙.内生菌BM18-2浸染对盐胁迫下饲草高粱生长与Na+、K+吸收和运输及饲用品质的影响[J].江苏农业科学,2024,52(7):159-164.
 Mao Zhengfeng,et al.Influences of endophytic bacteria BM18-2 inoculation on growth, absorption and transport of Na+,K+,and feed value of forage sorghum under salt stress[J].Jiangsu Agricultural Sciences,2024,52(7):159-164.
点击复制

内生菌BM18-2浸染对盐胁迫下饲草高粱生长与Na+、K+吸收和运输及饲用品质的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第7期
页码:
159-164
栏目:
畜牧兽医与水产蚕桑
出版日期:
2024-04-05

文章信息/Info

Title:
Influences of endophytic bacteria BM18-2 inoculation on growth, absorption and transport of Na+,K+,and feed value of forage sorghum under salt stress
作者:
毛峥沣12钟小仙2
1.南京农业大学草业学院,江苏南京 210095; 2.江苏省农业科学院畜牧研究所/国家牧草育种创新基地/农业农村部盐碱土改良(滨海盐碱地)重点实验室,江苏南京 210014
Author(s):
Mao Zhengfenget al
关键词:
内生菌巨大芽孢杆菌盐胁迫苏牧5号饲草高粱饲用品质选择性运输系数
Keywords:
-
分类号:
S514.01
DOI:
-
文献标志码:
A
摘要:
以巨大芽孢杆菌BM18-2、饲草高粱苏牧5号为材料,在土壤NaCl胁迫浓度为0、4、6、8 g/kg下,采用盆栽试验,研究了有或无BM18-2处理的苏牧5号幼苗在移栽后生长35 d,植株生长和根、茎、叶中Na+、K+吸收与运输及饲用品质的变化。结果表明,与无菌处理(对照)相比,内生菌BM18-2浸染可促进苏牧5号生长,显著提高有或无NaCl胁迫下根、茎、叶的干重以及盐胁迫下根中Na+含量,降低茎和叶中的Na+含量,显著或极显著提高根中的K+含量,提高茎和叶中的K+含量且土壤NaCl胁迫浓度为6、8 g/kg条件下茎、叶的K+含量均显著提高。与对照BM(0)相比,内生菌BM18-2浸染处理根中的K+/Na+仅NaCl胁迫浓度为6 g/kg时显著提高,极显著提高了NaCl浓度≤8 g/kg 胁迫下饲草高粱茎中的K+/Na+,提高了盐胁迫下苏牧5号叶中的K+/Na+且NaCl胁迫浓度为4 g/kg时显著提高。NaCl胁迫下,有菌处理的选择性运输系数SK+/Na+(stem/root)是无菌处理的1.15~1.39倍,且差异极显著;无盐胁迫条件下,内生菌BM18-2浸染处理的选择性运输系数SK+/Na+(leaf/stem)比无菌处理极显著提高20.57%;土壤NaCl浓度为6、8 g/kg胁迫下SK+/Na+(leaf/stem)显著降低10.48%、12.50%。在土壤NaCl胁迫浓度≤8 g/kg条件下,BM18-2可显著提高苏牧5号的粗蛋白含量、可溶性糖含量和粗饲料分级指数。本研究结果可以为耐盐牧草-巨大芽孢杆菌联合改良海涂和种养结合提供支撑,为牧草专用微生物菌提供实践依据。
Abstract:
-

参考文献/References:

[1] 杨劲松,姚荣江,王相平,等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报,2022,59(1):10-27.
[2]丁海荣,洪立洲,杨智青,等. 盐碱地及其生物措施改良研究现状[J]. 现代农业科技,2010(6):299-300,308.
[3]周和平,张立新,禹锋,等. 我国盐碱地改良技术综述及展望[J]. 现代农业科技,2007(11):159-161,164.
[4]孙建中,李霞,耿小燕,等. 一种源于象草的巨大芽孢杆菌及其用途:CN104762228B[P]. 2018-08-10.
[5]贡笑笑. 巨大芽孢杆菌制剂对牛羊的安全性评价及胃肠道微生物的影响[D]. 扬州:扬州大学,2017.
[6]周园园,郭永霞,段玉玺,等. 巨大芽孢杆菌Sneb207诱导大豆抗胞囊线虫病的防效及光合响应[J]. 大豆科学,2020,39(4):605-611.
[7]Shi L N,Lu L X,Ye J R,et al. The endophytic strain ZS-3 enhances salt tolerance in Arabidopsis thaliana by regulating photosynthesis,osmotic stress,and ion homeostasis and inducing systemic tolerance[J]. Frontiers in Plant Science,2022,13:820837.
[8]López-Bucio J,Campos-Cuevas J C,Hernández-Calderón E,et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,2007,20(2):207-217.
[9]徐征,邱世明. 一种多功能化内生型巨大芽孢杆菌的菌肥对反季节鲜食玉米品质提升效果的研究[J]. 中国农学通报,2020,36(18):130-133.
[10]罗欢,伍辉军,谢永丽,等. 巨大芽孢杆菌CJLC2菌株对盐胁迫下番茄生长及耐盐生理生化指标的影响[J]. 植物保护学报,2013,40(5):431-436.
[11]Wu J Z,Kamal N,Hao H H,et al. Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in hybrid Pennisetum[J]. Biotechnology Reports,2019,24:e00374.
[12]Kamal N,Liu Z W,Qian C,et al. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer[J]. Microbiological Research,2021,242:126594.
[13]刘智微,钟小仙,常盼盼,等. 海盐胁迫下苏牧2号象草幼苗不同器官中阳离子分配与运输[J]. 草业学报,21(5):237-247.
[14]Glenn E,Brown J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany,1998,85(1):10.
[15]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[16]张吉鹍,卢德勋,刘建新,等. 粗饲料品质评定指数的研究现状及其进展[J]. 草业科学,2004,21(9):55-61.
[17]Shen Z H,Pu X Z,Wang S M,et al. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+uptake[J]. Scientific Reports,2022,12(1):5089.
[18]Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
[19]赵振杰,张海龙,王明晶,等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报,2020,56(3):337-344.
[20]纪灵霄,杨洪兵. K+和Mg2+对盐胁迫下荞麦种子萌发及幼苗生长的影响[J]. 广东农业科学,2013,40(17):52-53,56.
[21]李晓院,解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报,2019,35(7):148-155.
[22]Gupta A,Shaw B P. Augmenting salt tolerance in rice by regulating uptake and tissue specific accumulation of Na+-through Ca2+-induced alteration of biochemical events[J]. Plant Biology,2021,23(Suppl 1):122-130.
[23]颜志明,魏跃,胡德龙,等. 盐胁迫下外源脯氨酸对甜瓜幼苗体内K+、Na+、Ca2+、Mg2+和Cl-含量及分布的影响[J]. 江苏农业学报,2014,30(3):612-618.
[24]赵春梅,崔继哲,金荣荣. 盐胁迫下植物体内保持高K+/Na+比率的机制[J]. 东北农业大学学报,2012,43(7):155-160.
[25]胡小加,江木兰. 巨大芽孢杆菌(A6)在红黄壤中对油菜的促生作用[J]. 中国油料作物学报,2003,25(4):107-108.
[26]刘文静,欧阳敦君,韩丽霞,等. 盐碱胁迫对流苏幼苗生长及离子分布的影响[J]. 中国野生植物资源,2019,38(6):27-32,37.
[27]Zou C S,Li Z F,Yu D Q. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran[J]. The Journal of Microbiology,2010,48(4):460-466.
[28]钟小仙,钱晨,刘智微,等. 一株富集镉促生长的杂交狼尾草内生巨大芽孢杆菌BM18-2及其应用:CN108102984B[P]. 2018-10-12.
[29]Zhong X X,Qian C,Liu Z W,et al. Endogenous Bacillus megaterium BM18-2 with cadium enrichment for promoting growth of Hybrid Pennisetum and appliction thereof:AU2018402480A1[P]. 2019-09-26.

相似文献/References:

[1]匡群,孙梅,张维娜,等.巨大芽孢杆菌JSSW-JD的生物学特性及对养殖水体氮磷的影响[J].江苏农业科学,2013,41(04):222.
[2]王静,罗国玖,蒙远涛,等.紫茎泽兰内生菌的分离及其代谢物的除草活性[J].江苏农业科学,2013,41(05):99.
 Wang Jing,et al.Isolation of endophyte and herbicidal activity of its metabolites in Eupatorium adenophorum[J].Jiangsu Agricultural Sciences,2013,41(7):99.
[3]杨国庆,郭娇,桂富荣.紫茎泽兰的化感物质对土壤有效磷含量和巨大芽孢杆菌生长的影响[J].江苏农业科学,2014,42(12):137.
 Yang Guoqing,et al.Effects of allelochemicals from Ageratina adenophora on available phosphorus contents in soil and growth of Bacillus megaterium[J].Jiangsu Agricultural Sciences,2014,42(7):137.
[4]司云龙,任丽丽,李玉玺,等.一株巨大芽孢杆菌J1的生胞培养及优化[J].江苏农业科学,2014,42(10):359.
 Si Yunlong,et al.Optimization of sporulation conditions of Bacillus megaterium strain J1[J].Jiangsu Agricultural Sciences,2014,42(7):359.
[5]王志勇,刘秀娟,易曲.植物内生菌分离时表面消毒条件的比较[J].江苏农业科学,2014,42(08):366.
 Wang Zhiyong,et al.Comparison of surface disinfection conditions during isolation of endophytic bacteria[J].Jiangsu Agricultural Sciences,2014,42(7):366.
[6]申丽,李晓雯,朱力.狗牙根内生黑曲霉(Aspergillus niger)的化学成分研究[J].江苏农业科学,2015,43(12):422.
 Shen Li,et al.Study on chemical constituents from endophyte Aspergillus niger in Cynodon dactylon[J].Jiangsu Agricultural Sciences,2015,43(7):422.
[7]赵媛,卢凤英.作物内生菌研究进展[J].江苏农业科学,2015,43(10):20.
 Zhao Yuan,et al.Research progress on plant endophytic fungus[J].Jiangsu Agricultural Sciences,2015,43(7):20.
[8]李志英,田岳娟,徐惠娟,等.小叶锦鸡儿内生拮抗菌株的筛选与分子鉴定[J].江苏农业科学,2014,42(06):105.
 Li Zhiying,et al.Screening and molecular identification of endophytic antagonistic strains from Caragana microphylla[J].Jiangsu Agricultural Sciences,2014,42(7):105.
[9]彭浩,陈文强,邓百万,等.药用植物虎杖内生菌的研究现状与应用展望[J].江苏农业科学,2014,42(08):1.
 Peng Hao,et al.Research status and application prospects of endophytes in Polygonum cuspidatum[J].Jiangsu Agricultural Sciences,2014,42(7):1.
[10]任友花,王羿超,李娜,等.微生物肥料高效解磷菌筛选及解磷机理探究[J].江苏农业科学,2016,44(12):537.
 Ren Youhua,et al.Screening of efficiency phosphate-solubilizing bacteria for microbial fertilizer and its phosphate dissolving mechanism[J].Jiangsu Agricultural Sciences,2016,44(7):537.

备注/Memo

备注/Memo:
收稿日期:2024-01-06
基金项目:江苏省林业科技创新与推广项目(编号:LYKJ[2021]23);江苏现代农业产业技术体系建设专项(编号:JATS[2023]152)。
作者简介:毛峥沣(1998—),男,浙江宁波人,硕士研究生,主要从事多用途牧草耐盐生理生态研究。E-mail:mzf0207@gmail.com。
通信作者:钟小仙,博士,二级研究员,主要从事草遗传育种与产业化关键技术研究与应用。E-mail:xiaoxian@jaas.ac.cn。
更新日期/Last Update: 2024-04-05