[1] 杨劲松,姚荣江,王相平,等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报,2022,59(1):10-27.
[2]丁海荣,洪立洲,杨智青,等. 盐碱地及其生物措施改良研究现状[J]. 现代农业科技,2010(6):299-300,308.
[3]周和平,张立新,禹锋,等. 我国盐碱地改良技术综述及展望[J]. 现代农业科技,2007(11):159-161,164.
[4]孙建中,李霞,耿小燕,等. 一种源于象草的巨大芽孢杆菌及其用途:CN104762228B[P]. 2018-08-10.
[5]贡笑笑. 巨大芽孢杆菌制剂对牛羊的安全性评价及胃肠道微生物的影响[D]. 扬州:扬州大学,2017.
[6]周园园,郭永霞,段玉玺,等. 巨大芽孢杆菌Sneb207诱导大豆抗胞囊线虫病的防效及光合响应[J]. 大豆科学,2020,39(4):605-611.
[7]Shi L N,Lu L X,Ye J R,et al. The endophytic strain ZS-3 enhances salt tolerance in Arabidopsis thaliana by regulating photosynthesis,osmotic stress,and ion homeostasis and inducing systemic tolerance[J]. Frontiers in Plant Science,2022,13:820837.
[8]López-Bucio J,Campos-Cuevas J C,Hernández-Calderón E,et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,2007,20(2):207-217.
[9]徐征,邱世明. 一种多功能化内生型巨大芽孢杆菌的菌肥对反季节鲜食玉米品质提升效果的研究[J]. 中国农学通报,2020,36(18):130-133.
[10]罗欢,伍辉军,谢永丽,等. 巨大芽孢杆菌CJLC2菌株对盐胁迫下番茄生长及耐盐生理生化指标的影响[J]. 植物保护学报,2013,40(5):431-436.
[11]Wu J Z,Kamal N,Hao H H,et al. Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in hybrid Pennisetum[J]. Biotechnology Reports,2019,24:e00374.
[12]Kamal N,Liu Z W,Qian C,et al. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer[J]. Microbiological Research,2021,242:126594.
[13]刘智微,钟小仙,常盼盼,等. 海盐胁迫下苏牧2号象草幼苗不同器官中阳离子分配与运输[J]. 草业学报,21(5):237-247.
[14]Glenn E,Brown J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany,1998,85(1):10.
[15]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[16]张吉鹍,卢德勋,刘建新,等. 粗饲料品质评定指数的研究现状及其进展[J]. 草业科学,2004,21(9):55-61.
[17]Shen Z H,Pu X Z,Wang S M,et al. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+uptake[J]. Scientific Reports,2022,12(1):5089.
[18]Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
[19]赵振杰,张海龙,王明晶,等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报,2020,56(3):337-344.
[20]纪灵霄,杨洪兵. K+和Mg2+对盐胁迫下荞麦种子萌发及幼苗生长的影响[J]. 广东农业科学,2013,40(17):52-53,56.
[21]李晓院,解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报,2019,35(7):148-155.
[22]Gupta A,Shaw B P. Augmenting salt tolerance in rice by regulating uptake and tissue specific accumulation of Na+-through Ca2+-induced alteration of biochemical events[J]. Plant Biology,2021,23(Suppl 1):122-130.
[23]颜志明,魏跃,胡德龙,等. 盐胁迫下外源脯氨酸对甜瓜幼苗体内K+、Na+、Ca2+、Mg2+和Cl-含量及分布的影响[J]. 江苏农业学报,2014,30(3):612-618.
[24]赵春梅,崔继哲,金荣荣. 盐胁迫下植物体内保持高K+/Na+比率的机制[J]. 东北农业大学学报,2012,43(7):155-160.
[25]胡小加,江木兰. 巨大芽孢杆菌(A6)在红黄壤中对油菜的促生作用[J]. 中国油料作物学报,2003,25(4):107-108.
[26]刘文静,欧阳敦君,韩丽霞,等. 盐碱胁迫对流苏幼苗生长及离子分布的影响[J]. 中国野生植物资源,2019,38(6):27-32,37.
[27]Zou C S,Li Z F,Yu D Q. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran[J]. The Journal of Microbiology,2010,48(4):460-466.
[28]钟小仙,钱晨,刘智微,等. 一株富集镉促生长的杂交狼尾草内生巨大芽孢杆菌BM18-2及其应用:CN108102984B[P]. 2018-10-12.
[29]Zhong X X,Qian C,Liu Z W,et al. Endogenous Bacillus megaterium BM18-2 with cadium enrichment for promoting growth of Hybrid Pennisetum and appliction thereof:AU2018402480A1[P]. 2019-09-26.
[1]匡群,孙梅,张维娜,等.巨大芽孢杆菌JSSW-JD的生物学特性及对养殖水体氮磷的影响[J].江苏农业科学,2013,41(04):222.
[2]王静,罗国玖,蒙远涛,等.紫茎泽兰内生菌的分离及其代谢物的除草活性[J].江苏农业科学,2013,41(05):99.
Wang Jing,et al.Isolation of endophyte and herbicidal activity of its metabolites in Eupatorium adenophorum[J].Jiangsu Agricultural Sciences,2013,41(7):99.
[3]杨国庆,郭娇,桂富荣.紫茎泽兰的化感物质对土壤有效磷含量和巨大芽孢杆菌生长的影响[J].江苏农业科学,2014,42(12):137.
Yang Guoqing,et al.Effects of allelochemicals from Ageratina adenophora on available phosphorus contents in soil and growth of Bacillus megaterium[J].Jiangsu Agricultural Sciences,2014,42(7):137.
[4]司云龙,任丽丽,李玉玺,等.一株巨大芽孢杆菌J1的生胞培养及优化[J].江苏农业科学,2014,42(10):359.
Si Yunlong,et al.Optimization of sporulation conditions of Bacillus megaterium strain J1[J].Jiangsu Agricultural Sciences,2014,42(7):359.
[5]王志勇,刘秀娟,易曲.植物内生菌分离时表面消毒条件的比较[J].江苏农业科学,2014,42(08):366.
Wang Zhiyong,et al.Comparison of surface disinfection conditions during isolation of endophytic bacteria[J].Jiangsu Agricultural Sciences,2014,42(7):366.
[6]申丽,李晓雯,朱力.狗牙根内生黑曲霉(Aspergillus niger)的化学成分研究[J].江苏农业科学,2015,43(12):422.
Shen Li,et al.Study on chemical constituents from endophyte Aspergillus niger in Cynodon dactylon[J].Jiangsu Agricultural Sciences,2015,43(7):422.
[7]赵媛,卢凤英.作物内生菌研究进展[J].江苏农业科学,2015,43(10):20.
Zhao Yuan,et al.Research progress on plant endophytic fungus[J].Jiangsu Agricultural Sciences,2015,43(7):20.
[8]李志英,田岳娟,徐惠娟,等.小叶锦鸡儿内生拮抗菌株的筛选与分子鉴定[J].江苏农业科学,2014,42(06):105.
Li Zhiying,et al.Screening and molecular identification of endophytic antagonistic strains from Caragana microphylla[J].Jiangsu Agricultural Sciences,2014,42(7):105.
[9]彭浩,陈文强,邓百万,等.药用植物虎杖内生菌的研究现状与应用展望[J].江苏农业科学,2014,42(08):1.
Peng Hao,et al.Research status and application prospects of endophytes in Polygonum cuspidatum[J].Jiangsu Agricultural Sciences,2014,42(7):1.
[10]任友花,王羿超,李娜,等.微生物肥料高效解磷菌筛选及解磷机理探究[J].江苏农业科学,2016,44(12):537.
Ren Youhua,et al.Screening of efficiency phosphate-solubilizing bacteria for microbial fertilizer and its phosphate dissolving mechanism[J].Jiangsu Agricultural Sciences,2016,44(7):537.