[1]丁一汇,任国玉,石广玉,等. 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变化研究进展,2006,2(1):3-8.
[2]秦大河,陈振林,罗勇,等. 气候变化科学的最新认知[J]. 气候变化研究进展,2007(2):63-73.
[3]Luo Z B,Lam S K,Fu H,et al. Temporal and spatial evolution of nitrous oxide emissions in China:assessment,strategy and recommendation[J]. Journal of Cleaner Production,2019,223:360-367.
[4]Zhang W,Yu Y Q,Huang Y,et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050[J]. Global Change Biology,2011,17(12):3511-3523.
[5]Wang Y J,Guo J H,Vogt R D,et al. Soil pH as the chief modifier for regional nitrous oxide emissions:new evidence and implications for global estimates and mitigation[J]. Global Change Biology,2018,24(2):e617-e626.
[6]VanderZaag A C. On the systematic underestimation of methane conversion factors in IPCC guidance[J]. Waste Management,2018,75:499-502.
[7]Sundqvist E,Persson A,Kljun N,et al. Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data[J]. Agricultural and Forest Meteorology,2015,214/215:393-401.
[8]李长生. 生物地球化学的概念与方法——DNDC模型的发展[J]. 第四纪研究,2001,21(2):89-99.
[9]Xu X F,Yuan F M,Hanson P J,et al. Reviews and syntheses:four decades of modeling methane cycling in terrestrial ecosystems[J]. Biogeosciences,2016,13(12):3735-3755.
[10]Zhou M H,Wang X G,Wang Y Q,et al. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China:emission factor,temperature sensitivity and fertilizer nitrogen effect[J]. Agricultural and Forest Meteorology,2018,250/251:299-307.
[11]Yue Q,Ledo A,Cheng K,et al. Re-assessing nitrous oxide emissions from croplands across Mainland China[J]. Agriculture Ecosystems & Environment,2018,268:70-78.
[12]Li C S. Quantifying greenhouse gas emissions from soils:scientific basis and modeling approach[J]. Soil Science and Plant Nutrition,2007,53(4):344-352.
[13]Ren T,Bu R Y,Liao S P,et al. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations[J]. Soil and Tillage Research,2019,192:206-214.
[14]Cha-un N,Chidthaisong A,Yagi K,et al. Greenhouse gas emissions,soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management[J]. Agriculture,Ecosystems & Environment,2017,237:109-120.
[15]Li C S. Modeling trace gas emissions from agricultural ecosystems[M]//Methane emissions from major rice ecosystems in Asia.Dordrecht:Springer Netherlands,2000:259-276.
[16]Walker S E,Mitchell J K,Hirschi M C,et al. Sensitivity analysis of the root zone water quality model[J]. Transactions of the ASAE,2000,43(4):841-846.
[17]Folland C,Karl T R and Christy J R. Climate change 2001:the scientific basis. contribution of working group i to the third assessment report of the intergovernmental panel on climate change[J]. Observed Climate Variability and Change,2001:99-181.
[18]Deng Y L,Paraskevas D,Cao S J.Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment[J]. Science of the Total Environment,2017,593/594:65-74.
[19]Yue Q,Cheng K,Ogle S,et al. Evaluation of four modelling approaches to estimate nitrous oxide emissions in Chinas cropland[J]. Science of the Total Environment,2019,652:1279-1289.
[20]Katayanagi N,Fumoto T,Hayano M,et al. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model[J]. Science of the Total Environment,2016,547:429-440.
[21]Zhang X X,Bi J G,Sun H F,et al. Greenhouse gas mitigation potential under different rice-crop rotation systems:from site experiment to model evaluation[J]. Clean Technologies and Environmental Policy,2019,21(8):1587-1601.
[22]Timilsina A,Bizimana F,Pandey B,et al. Nitrous oxide emissions from paddies:understanding the role of rice plants[J]. Plants,2020,9(2):180.
[23]Lenhart K,Behrendt T,Greiner S,et al. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere[J]. The New Phytologist,2019,221(3):1398-1408.
[24]Babu Y J,Li C,Frolking S,et al. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India[J]. Nutrient Cycling in Agroecosystems,2006,74(2):157-174.
[25]Blankinship J C,Brown J R,Dijkstra P,et al. Effects of interactive global changes on methane uptake in an annual grassland[J]. Journal of Geophysical Research:Biogeosciences,2010,115(G2):G02008.
[26]Guest G,Krbel R,Grant B,et al. Model comparison of soil processes in eastern Canada using DayCent,DNDC and STICS[J]. Nutrient Cycling in Agroecosystems,2017,109(3):211-232.
[27]Zou J W,Huang Y,Jiang J Y,et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime,crop residue,and fertilizer application[J]. Global Biogeochemical Cycles,2005,19(2):1-9.
[28]Ghimire R,Machado S,Bista P.Decline in soil organic carbon and nitrogen limits yield in wheat-fallow systems[J]. Plant and Soil,2018,422(1):423-435.
[29]Sun Y N,Huang S,Yu X C,et al. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China[J]. Plant and Soil,2015,397(1):189-200.
[1]李庆魁,金夏明,单建明.稻麦轮作系统中不同养分资源管理方式对水稻的影响[J].江苏农业科学,2017,45(19):161.
Li Qingkui,et al.Effects of different nutrient management modes on rice in rice-wheat rotation system[J].Jiangsu Agricultural Sciences,2017,45(7):161.
[2]吴亚楠,魏强,孙晶华.基于DNDC模型的小麦生命周期资源环境影响评价[J].江苏农业科学,2018,46(06):258.
Wu Yanan,et al.Life cycle environmental influence assessment of wheat based on DNDC model[J].Jiangsu Agricultural Sciences,2018,46(7):258.
[3]陈文超,徐生,孙婷,等.稻麦轮作模式下控释BB肥一次性基施效果研究[J].江苏农业科学,2018,46(09):63.
Chen Wenchao,et al.Single basal application effect of controlled release BB fertilizer under rice-wheat rotation mode[J].Jiangsu Agricultural Sciences,2018,46(7):63.
[4]刘晓宇,刘杨,冯彦房,等.水稻秸秆生物炭对渍害胁迫下稻麦轮作土壤的影响[J].江苏农业科学,2021,49(5):211.
Liu Xiaoyu,et al.Impact of rice straw biochar on soil of rice-wheat rotation under waterlogging stress[J].Jiangsu Agricultural Sciences,2021,49(7):211.