|本期目录/Table of Contents|

[1]杨雨茗.不同模拟方法对稻麦轮作系统温室气体估算差异[J].江苏农业科学,2024,52(7):231-240.
 Yang Yuming.Differences in greenhouse gas estimation of rice-wheat rotation system by different simulation methods[J].Jiangsu Agricultural Sciences,2024,52(7):231-240.
点击复制

不同模拟方法对稻麦轮作系统温室气体估算差异(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第7期
页码:
231-240
栏目:
资源与环境
出版日期:
2024-04-05

文章信息/Info

Title:
Differences in greenhouse gas estimation of rice-wheat rotation system by different simulation methods
作者:
杨雨茗
河海大学环境学院,江苏南京 210098
Author(s):
Yang Yuming
关键词:
稻麦轮作DNDC模型IPCC2006 Tier2温室气体
Keywords:
-
分类号:
S181;S344.1
DOI:
-
文献标志码:
A
摘要:
温室气体排放导致的全球气候变化问题是社会关注的重要问题,如何较准确地估算各领域内的温室气体排放通量对制定减排策略具有重要意义。为分析研究区水稻—冬小麦轮作系统温室气体(CH4、N2O)排放水平,对比IPCC2006 Tier2及DNDC模型法估算研究区稻麦轮作系统的CH4和N2O排放通量估算差异,定量评估DNDC模型是否适用于轮作系统的温室气体排放估算。 于2015—2018年进行稻麦轮作野外试验,利用静态箱-气相色谱分析法定期测定CH4和N2O排放通量,结合田间管理和气象数据开展IPCC2006 Tier2和DNDC模型模拟,利用DNDC模型模拟轮作和非轮作情景的稻麦温室气体排放通量。结果表明,DNDC模型可以较好地模拟出稻田CH4、N2O和麦田N2O排放通量时序变化特征,估算误差分别为-4.8%、-11.6%、-10.8%,精度优于IPCC2006 Tier2;DNDC模型对稻麦轮作的GWP模拟精度高于IPCC2006 Tier2,稻田和麦田GWP模拟相对误差分别为-5.9%、-21.7%;除了冬小麦生育期CH4排放通量,DNDC轮作模式对其他稻麦轮作温室气体排放通量的模拟相对误差均低于非轮作模式。进而为区域农业温室气体估算及制定减排方案提供科学依据。
Abstract:
-

参考文献/References:

[1]丁一汇,任国玉,石广玉,等. 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变化研究进展,2006,2(1):3-8.
[2]秦大河,陈振林,罗勇,等. 气候变化科学的最新认知[J]. 气候变化研究进展,2007(2):63-73.
[3]Luo Z B,Lam S K,Fu H,et al. Temporal and spatial evolution of nitrous oxide emissions in China:assessment,strategy and recommendation[J]. Journal of Cleaner Production,2019,223:360-367.
[4]Zhang W,Yu Y Q,Huang Y,et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050[J]. Global Change Biology,2011,17(12):3511-3523.
[5]Wang Y J,Guo J H,Vogt R D,et al. Soil pH as the chief modifier for regional nitrous oxide emissions:new evidence and implications for global estimates and mitigation[J]. Global Change Biology,2018,24(2):e617-e626.
[6]VanderZaag A C. On the systematic underestimation of methane conversion factors in IPCC guidance[J]. Waste Management,2018,75:499-502.
[7]Sundqvist E,Persson A,Kljun N,et al. Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data[J]. Agricultural and Forest Meteorology,2015,214/215:393-401.
[8]李长生. 生物地球化学的概念与方法——DNDC模型的发展[J]. 第四纪研究,2001,21(2):89-99.
[9]Xu X F,Yuan F M,Hanson P J,et al. Reviews and syntheses:four decades of modeling methane cycling in terrestrial ecosystems[J]. Biogeosciences,2016,13(12):3735-3755.
[10]Zhou M H,Wang X G,Wang Y Q,et al. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China:emission factor,temperature sensitivity and fertilizer nitrogen effect[J]. Agricultural and Forest Meteorology,2018,250/251:299-307.
[11]Yue Q,Ledo A,Cheng K,et al. Re-assessing nitrous oxide emissions from croplands across Mainland China[J]. Agriculture Ecosystems & Environment,2018,268:70-78.
[12]Li C S. Quantifying greenhouse gas emissions from soils:scientific basis and modeling approach[J]. Soil Science and Plant Nutrition,2007,53(4):344-352.
[13]Ren T,Bu R Y,Liao S P,et al. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations[J]. Soil and Tillage Research,2019,192:206-214.
[14]Cha-un N,Chidthaisong A,Yagi K,et al. Greenhouse gas emissions,soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management[J]. Agriculture,Ecosystems & Environment,2017,237:109-120.
[15]Li C S. Modeling trace gas emissions from agricultural ecosystems[M]//Methane emissions from major rice ecosystems in Asia.Dordrecht:Springer Netherlands,2000:259-276.
[16]Walker S E,Mitchell J K,Hirschi M C,et al. Sensitivity analysis of the root zone water quality model[J]. Transactions of the ASAE,2000,43(4):841-846.
[17]Folland C,Karl T R and Christy J R. Climate change 2001:the scientific basis. contribution of working group i to the third assessment report of the intergovernmental panel on climate change[J]. Observed Climate Variability and Change,2001:99-181.
[18]Deng Y L,Paraskevas D,Cao S J.Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment[J]. Science of the Total Environment,2017,593/594:65-74.
[19]Yue Q,Cheng K,Ogle S,et al. Evaluation of four modelling approaches to estimate nitrous oxide emissions in Chinas cropland[J]. Science of the Total Environment,2019,652:1279-1289.
[20]Katayanagi N,Fumoto T,Hayano M,et al. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model[J]. Science of the Total Environment,2016,547:429-440.
[21]Zhang X X,Bi J G,Sun H F,et al. Greenhouse gas mitigation potential under different rice-crop rotation systems:from site experiment to model evaluation[J]. Clean Technologies and Environmental Policy,2019,21(8):1587-1601.
[22]Timilsina A,Bizimana F,Pandey B,et al. Nitrous oxide emissions from paddies:understanding the role of rice plants[J]. Plants,2020,9(2):180.
[23]Lenhart K,Behrendt T,Greiner S,et al. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere[J]. The New Phytologist,2019,221(3):1398-1408.
[24]Babu Y J,Li C,Frolking S,et al. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India[J]. Nutrient Cycling in Agroecosystems,2006,74(2):157-174.
[25]Blankinship J C,Brown J R,Dijkstra P,et al. Effects of interactive global changes on methane uptake in an annual grassland[J]. Journal of Geophysical Research:Biogeosciences,2010,115(G2):G02008.
[26]Guest G,Krbel R,Grant B,et al. Model comparison of soil processes in eastern Canada using DayCent,DNDC and STICS[J]. Nutrient Cycling in Agroecosystems,2017,109(3):211-232.
[27]Zou J W,Huang Y,Jiang J Y,et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime,crop residue,and fertilizer application[J]. Global Biogeochemical Cycles,2005,19(2):1-9.
[28]Ghimire R,Machado S,Bista P.Decline in soil organic carbon and nitrogen limits yield in wheat-fallow systems[J]. Plant and Soil,2018,422(1):423-435.
[29]Sun Y N,Huang S,Yu X C,et al. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China[J]. Plant and Soil,2015,397(1):189-200.

相似文献/References:

[1]李庆魁,金夏明,单建明.稻麦轮作系统中不同养分资源管理方式对水稻的影响[J].江苏农业科学,2017,45(19):161.
 Li Qingkui,et al.Effects of different nutrient management modes on rice in rice-wheat rotation system[J].Jiangsu Agricultural Sciences,2017,45(7):161.
[2]吴亚楠,魏强,孙晶华.基于DNDC模型的小麦生命周期资源环境影响评价[J].江苏农业科学,2018,46(06):258.
 Wu Yanan,et al.Life cycle environmental influence assessment of wheat based on DNDC model[J].Jiangsu Agricultural Sciences,2018,46(7):258.
[3]陈文超,徐生,孙婷,等.稻麦轮作模式下控释BB肥一次性基施效果研究[J].江苏农业科学,2018,46(09):63.
 Chen Wenchao,et al.Single basal application effect of controlled release BB fertilizer under rice-wheat rotation mode[J].Jiangsu Agricultural Sciences,2018,46(7):63.
[4]刘晓宇,刘杨,冯彦房,等.水稻秸秆生物炭对渍害胁迫下稻麦轮作土壤的影响[J].江苏农业科学,2021,49(5):211.
 Liu Xiaoyu,et al.Impact of rice straw biochar on soil of rice-wheat rotation under waterlogging stress[J].Jiangsu Agricultural Sciences,2021,49(7):211.

备注/Memo

备注/Memo:
收稿日期:2023-10-12
作者简介:杨雨茗(2003—),女,江苏盐城人,主要从事资源环境研究。E-mail:2225285636@qq.com。
更新日期/Last Update: 2024-04-05