|本期目录/Table of Contents|

[1]谭彬,蔡健荣,许骞,等.基于注意力机制改进卷积神经网络的柑橘病虫害识别[J].江苏农业科学,2024,52(8):176-182.
 Tan Bin,et al.Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks[J].Jiangsu Agricultural Sciences,2024,52(8):176-182.
点击复制

基于注意力机制改进卷积神经网络的柑橘病虫害识别(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第8期
页码:
176-182
栏目:
农业工程与信息技术
出版日期:
2024-04-20

文章信息/Info

Title:
Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks
作者:
谭彬1蔡健荣2许骞2孙力2
1.江苏大学机械工程学院,江苏镇江 212013; 2.江苏大学食品与生物工程学院,江苏镇江 212013
Author(s):
Tan Binet al
关键词:
柑橘病虫害图像分类注意力机制深度学习CBAM
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
柑橘是我国种植面积最大、产量最高的水果作物,对我国的经济发展具有重要作用。柑橘病虫害侵染是导致柑橘产量及品质下降的重要原因之一,高效、准确的柑橘检测技术对柑橘产业的发展具有重要意义。因此,本研究提出一种基于注意力机制改进卷积神经网络的柑橘病虫害识别算法,以多尺度特征提取网络Inception v3为基础,在Inception结构间加入CBAM注意力机制,构建基于注意力机制的多尺度特征提取网络;然后融合残差注意力网络,提升模型的整体性能,以实现对柑橘病虫害的精准识别。试验结果表明,基于注意力机制改进卷积神经网络的柑橘病虫害识别算法从通道和空间维度提高了对输入有效特征的关注度,在融合残差注意力网络后,提高了模型的整体性能,实现对5种柑橘叶片(溃疡病、潜叶蛾、黑点病、红蜘蛛和健康叶片)的识别准确率达到98.49%,比基础模型提高4.02百分点,说明本研究提出的方法对柑橘病虫害的识别效果较好。最后将模型进行部署,设计柑橘病虫害识别系统,实现基于移动端的柑橘病虫害智能检测,为相关研究提供参考。
Abstract:
-

参考文献/References:

[1]沈兆敏. 我国柑橘生产销售现状及发展趋势[J]. 果农之友,2021(3):1-4.
[2]祁春节,顾雨檬,曾彦. 我国柑橘产业经济研究进展[J]. 华中农业大学学报,2021,40(1):58-69.
[3]王彦翔,张艳,杨成娅,等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报,2019,31(4):669-676.
[4]唐利华,郭堂勋,李其利,等. 柑橘黄龙病田间诊断与检测技术研究进展[J]. 中国植保导刊,2018,38(8):81-87.
[5]Munisami T,Ramsurn M,Kishnah S,et al. Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers[J]. Procedia Computer Science,2015,58:740-747.
[6]Yang X,Ni H M,Li J K,et al. Leaf recognition using BP-RBF hybrid neural network[J]. Journal of Forestry Research,2022,33(2):579-589.
[7]Azlah M A F,Chua L S,Rahmad F R,et al. Review on techniques for plant leaf classification and recognition[J]. Computers,2019,8(4):77.
[8]Zhang S W,Wu X W,You Z H,et al. Leaf image based cucumber disease recognition using sparse representation classification[J]. Computers and Electronics in Agriculture,2017,134:135-141.
[9]Agarwal M,Gupta S K,Biswas K K. Development of efficient CNN model for tomato crop disease identification[J]. Sustainable Computing:Informatics and Systems,2020,28:100407.
[10]Mique E L Jr,Palaoag T D. Rice pest and disease detection using convolutional neural network[C]//Proceedings of the 1st International Conference on Information Science and Systems. 2018:147-151.
[11]Rangarajan A K,Purushothaman R,Ramesh A. Tomato crop disease classification using pre-trained deep learning algorithm[J]. Procedia Computer Science,2018,133:1040-1047.
[12]Geetharamani G,Pandian A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network[J]. Computers & Electrical Engineering,2019,76:323-338.
[13]Xing S L,Lee M,Lee K K. Citrus pests and diseases recognition model using weakly dense connected convolution network[J]. Sensors,2019,19(14):3195.
[14]Liu B,Ding Z F,Tian L L,et al. Grape leaf disease identification using improved deep convolutional neural networks[J]. Frontiers in Plant Science,2020,11:1082.
[15]王超,王春圻,刘金明. 基于深度学习的玉米叶片病害识别方法研究[J]. 现代农业研究,2022,28(6):102-106.
[16]朱帅,王金聪,任洪娥,等. 基于多特征融合的残差网络果树叶片病害识别[J]. 森林工程,2022,38(1):108-114,123.
[17]樊湘鹏,周建平,许燕,等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报,2021,52(3):210-217.
[18]李庆盛,缪楠,张鑫,等. 基于注意力机制非对称残差网络和迁移学习的玉米病害图像识别[J]. 科学技术与工程,2021,21(15):6249-6256.
[19]杨泳波,赵远洋,李振波,等. 基于胶囊 SE-Inception 的茄科病害识别方法研究[J]. 图学学报,2022,43(1):28-35.
[20]贾兆红,张袁源,王海涛,等. 基于Res2Net和双线性注意力的番茄病害时期识别方法[J]. 农业机械学报,2022,53(7):259-266.
[21]黄林生,罗耀武,杨小冬,等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报,2021,52(10):264-271.
[22]侯发东. 基于卷积神经网络的棉花叶部病虫害自动识别研究[D]. 泰安:山东农业大学,2020.
[23]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[24]张会敏,谢泽奇,张善文. 基于注意力胶囊网络的作物病害识别方法[J]. 江苏农业科学,2022,50(6):101-106.
[25]Chen J D,Zhang D F,Zeb A,et al. Identification of rice plant diseases using lightweight attention networks[J]. Expert Systems with Applications,2021,169:114514.
[26]Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:2818-2826.
[27]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:770-778.

相似文献/References:

[1]卜伟琼,方逵,张晓玲,等.基于本体的柑橘病虫害知识模型构建[J].江苏农业科学,2013,41(10):363.
 Bu Weiqiong,et al.Knowledge model construction of citrus diseases and insect pests based on ontology[J].Jiangsu Agricultural Sciences,2013,41(8):363.
[2]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
 Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(8):178.
[3]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
 Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(8):190.
[4]王晶,崔艳荣.基于改进MobileNet v3-Small模型的草莓病害识别方法[J].江苏农业科学,2024,52(10):225.
 Wang Jing,et al.Strawberry disease identification method based on improved MobileNet v3-Small model[J].Jiangsu Agricultural Sciences,2024,52(8):225.
[5]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216.
 Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(8):216.
[6]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
 Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(8):214.
[7]梁倩倩,陈勇,崔艳荣.基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法[J].江苏农业科学,2024,52(14):222.
 Liang Qianqian,et al.An apple leaf pest identification method based on improved lightweight network MobileViT[J].Jiangsu Agricultural Sciences,2024,52(8):222.
[8]戴硕,白涛,李东亚,等.基于知识蒸馏及改进ShuffleNet v2的棉花病虫害识别方法[J].江苏农业科学,2024,52(15):222.
 Dai Shuo,et al.Recognition of cotton pests and diseases based on knowledge distillation and improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(8):222.
[9]严露露,朱赞彬,冯世杰,等.基于改进FixMatch算法的半监督番茄病虫害识别[J].江苏农业科学,2024,52(20):244.
 Yan Lulu,et al.Semi-supervised identification of tomato diseases and pests based on improved FixMatch algorithm[J].Jiangsu Agricultural Sciences,2024,52(8):244.
[10]董天亮,李佳,马晓,等.基于SC-ConvNeXt网络模型的小麦叶片病害识别方法[J].江苏农业科学,2025,53(5):129.
 Dong Tianliang,et al.A wheat leaf disease recognition method based on SC-ConvNeXt network model[J].Jiangsu Agricultural Sciences,2025,53(8):129.

备注/Memo

备注/Memo:
收稿日期:2023-06-12
基金项目:国家现代农业产业技术体系建设专项(编号:CARS-26)。
作者简介:谭彬(1997—),男,山东临沂人,硕士研究生,从事图像处理和无损检测研究。E-mail:2670600717@qq.com。
通信作者:蔡健荣,博士,教授,从事食品、农产品质量快速无损检测研究。E-mail:jrcai@ujs.edu.cn。
更新日期/Last Update: 2024-04-20