[1]沈兆敏. 我国柑橘生产销售现状及发展趋势[J]. 果农之友,2021(3):1-4.
[2]祁春节,顾雨檬,曾彦. 我国柑橘产业经济研究进展[J]. 华中农业大学学报,2021,40(1):58-69.
[3]王彦翔,张艳,杨成娅,等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报,2019,31(4):669-676.
[4]唐利华,郭堂勋,李其利,等. 柑橘黄龙病田间诊断与检测技术研究进展[J]. 中国植保导刊,2018,38(8):81-87.
[5]Munisami T,Ramsurn M,Kishnah S,et al. Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers[J]. Procedia Computer Science,2015,58:740-747.
[6]Yang X,Ni H M,Li J K,et al. Leaf recognition using BP-RBF hybrid neural network[J]. Journal of Forestry Research,2022,33(2):579-589.
[7]Azlah M A F,Chua L S,Rahmad F R,et al. Review on techniques for plant leaf classification and recognition[J]. Computers,2019,8(4):77.
[8]Zhang S W,Wu X W,You Z H,et al. Leaf image based cucumber disease recognition using sparse representation classification[J]. Computers and Electronics in Agriculture,2017,134:135-141.
[9]Agarwal M,Gupta S K,Biswas K K. Development of efficient CNN model for tomato crop disease identification[J]. Sustainable Computing:Informatics and Systems,2020,28:100407.
[10]Mique E L Jr,Palaoag T D. Rice pest and disease detection using convolutional neural network[C]//Proceedings of the 1st International Conference on Information Science and Systems. 2018:147-151.
[11]Rangarajan A K,Purushothaman R,Ramesh A. Tomato crop disease classification using pre-trained deep learning algorithm[J]. Procedia Computer Science,2018,133:1040-1047.
[12]Geetharamani G,Pandian A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network[J]. Computers & Electrical Engineering,2019,76:323-338.
[13]Xing S L,Lee M,Lee K K. Citrus pests and diseases recognition model using weakly dense connected convolution network[J]. Sensors,2019,19(14):3195.
[14]Liu B,Ding Z F,Tian L L,et al. Grape leaf disease identification using improved deep convolutional neural networks[J]. Frontiers in Plant Science,2020,11:1082.
[15]王超,王春圻,刘金明. 基于深度学习的玉米叶片病害识别方法研究[J]. 现代农业研究,2022,28(6):102-106.
[16]朱帅,王金聪,任洪娥,等. 基于多特征融合的残差网络果树叶片病害识别[J]. 森林工程,2022,38(1):108-114,123.
[17]樊湘鹏,周建平,许燕,等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报,2021,52(3):210-217.
[18]李庆盛,缪楠,张鑫,等. 基于注意力机制非对称残差网络和迁移学习的玉米病害图像识别[J]. 科学技术与工程,2021,21(15):6249-6256.
[19]杨泳波,赵远洋,李振波,等. 基于胶囊 SE-Inception 的茄科病害识别方法研究[J]. 图学学报,2022,43(1):28-35.
[20]贾兆红,张袁源,王海涛,等. 基于Res2Net和双线性注意力的番茄病害时期识别方法[J]. 农业机械学报,2022,53(7):259-266.
[21]黄林生,罗耀武,杨小冬,等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报,2021,52(10):264-271.
[22]侯发东. 基于卷积神经网络的棉花叶部病虫害自动识别研究[D]. 泰安:山东农业大学,2020.
[23]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19.
[24]张会敏,谢泽奇,张善文. 基于注意力胶囊网络的作物病害识别方法[J]. 江苏农业科学,2022,50(6):101-106.
[25]Chen J D,Zhang D F,Zeb A,et al. Identification of rice plant diseases using lightweight attention networks[J]. Expert Systems with Applications,2021,169:114514.
[26]Szegedy C,Vanhoucke V,Ioffe S,et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:2818-2826.
[27]He K M,Zhang X Y,Ren S Q,et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:770-778.
[1]卜伟琼,方逵,张晓玲,等.基于本体的柑橘病虫害知识模型构建[J].江苏农业科学,2013,41(10):363.
Bu Weiqiong,et al.Knowledge model construction of citrus diseases and insect pests based on ontology[J].Jiangsu Agricultural Sciences,2013,41(8):363.
[2]余骥远,高尚兵,李洁,等.基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J].江苏农业科学,2023,51(6):178.
Yu Jiyuan,et al.Classification of mung bean leaf spot based on MS-PLNet and hyperspectral images[J].Jiangsu Agricultural Sciences,2023,51(8):178.
[3]马晓,邢雪,武青海.基于改进ConvNext的复杂背景下玉米叶片病害分类[J].江苏农业科学,2023,51(19):190.
Ma Xiao,et al.Maize leaf disease classification under complex background based on improved ConvNext[J].Jiangsu Agricultural Sciences,2023,51(8):190.
[4]王晶,崔艳荣.基于改进MobileNet v3-Small模型的草莓病害识别方法[J].江苏农业科学,2024,52(10):225.
Wang Jing,et al.Strawberry disease identification method based on improved MobileNet v3-Small model[J].Jiangsu Agricultural Sciences,2024,52(8):225.
[5]张澳雪,崔艳荣,李素若,等.基于改进RegNet网络的玉米叶片病害识别研究[J].江苏农业科学,2024,52(11):216.
Zhang Aoxue,et al.Identification of maize leaf diseases based on improved RegNet network[J].Jiangsu Agricultural Sciences,2024,52(8):216.
[6]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(8):214.
[7]梁倩倩,陈勇,崔艳荣.基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法[J].江苏农业科学,2024,52(14):222.
Liang Qianqian,et al.An apple leaf pest identification method based on improved lightweight network MobileViT[J].Jiangsu Agricultural Sciences,2024,52(8):222.
[8]戴硕,白涛,李东亚,等.基于知识蒸馏及改进ShuffleNet v2的棉花病虫害识别方法[J].江苏农业科学,2024,52(15):222.
Dai Shuo,et al.Recognition of cotton pests and diseases based on knowledge distillation and improved ShuffleNet v2[J].Jiangsu Agricultural Sciences,2024,52(8):222.
[9]严露露,朱赞彬,冯世杰,等.基于改进FixMatch算法的半监督番茄病虫害识别[J].江苏农业科学,2024,52(20):244.
Yan Lulu,et al.Semi-supervised identification of tomato diseases and pests based on improved FixMatch algorithm[J].Jiangsu Agricultural Sciences,2024,52(8):244.
[10]董天亮,李佳,马晓,等.基于SC-ConvNeXt网络模型的小麦叶片病害识别方法[J].江苏农业科学,2025,53(5):129.
Dong Tianliang,et al.A wheat leaf disease recognition method based on SC-ConvNeXt network model[J].Jiangsu Agricultural Sciences,2025,53(8):129.